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ABSTRACT

This paper examines the existence and the uniqueness of common fixed points for mappings that atisfy
an (T, S) and (o, B)-orbital cyclic admissibility condition within the context of extended b,-metric
spaces. The main theorem outlines the conditions necessary for common fixed points of a pair of self-
mappings (T, S) under the admissibility criteria, which include a contractive-like condition involving
a and B. Ultimately, the paper offers corollaries and illustrations for single-valued mappings,
demonstrating how the established theory can be utilized in various contexts.
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1. Introduction

In recent years, numerous researchers have investigated common fixed points of mappings that
adhere to various contractive conditions. This field has a wide range of significant applications in
applied mathematics and the sciences. In 1976, Jungck [10] established a common fixed point
theorem for commuting maps, contingent upon the continuity of at least one of the mappings. In
1982, Sessa , introduced the notion of weak commutativity for pairs of self-maps. He demonstrated
that weakly commuting pairs of maps within a metric space are indeed commuting; however, the
reverse is not necessarily true. The idea of a b-metric space was first proposed by Czerwik in 1993
and 1998 [4,5], which led to the development of several fixed-point results. Later, Zead Mustafa
and colleagues (2014) [12] introduced a generalized metric space known as the b,-metric space,
which encompasses both the 2-metric space and the b-metric space. In 2017, Kamran et al [11],
explored an extended b-metric space and derived unique fixed-point results. More recently, in
2018, Elmabrouk and Alkaleeli [6-9] introduced a new type of generalized b,-metric space,
referred to as extended b,-metric spaces, which generalizes both the b,-metric space and the
extended b-metric space. Subsequently, we validated some fixed-point theorems by Elmabrok and
Al-Mugsabi in (2021-2022) [8]. This article specifically examines the existence of common fixed
points for a certain class of mappings called («, 8) orbital cyclic-admissible mappings, all within
the framework of extended bz-metric spaces. These spaces, which generalize b-metric spaces and
other related structures, create a broader context for addressing fixed point problems. We build on
and extend existing fixed point theorems found in the literature. A new concept, (a, ) orbital
cyclic admissibility, is introduced for a pair of self-mappings (S, T) within a complete extended

ba-metric space. This new idea combines orbital cyclic mappings with (a, 8) admissible mappings,
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providing a robust framework for studying fixed point existence. A significant theorem (Theorem
3.3) is established to guarantee the existence of a common fixed point for the pair of mappings
under specific conditions, including a contractive conditions modulated by the a and B functions,
as well as conditions on the 6 function associated with the extended b.-metric. Illustrative
examples are provided to demonstrate the applicability of our main result. In addition, we explore
the existence of fixed points for a single self-mapping T under the (a,f) orbital cyclic
admissibility condition. Corollaries 3.6 and 3.8 present corresponding fixed point theorems for this
situation, supported by relevant examples. Lastly, we tackle the uniqueness of the fixed point under
an additional condition (A), leading to Theorem 4.1, which asserts that the common fixed point
established by Theorem 3.3 is unique when condition (A) is satisfied.

The subsequent sections will provide crucial background information on extended b,-metric and
will confirm various fixed-point theorems. Section 3 will examine notable fixed-point results in
the framework of extended b,-metric space, utilizing (S,T) and (a,B) — orbital-cyclic admissible
mappings. This will be accompanied by comprehensive proofs of the primary results and relevant

illustrative examples.

2. Preliminaries

Following this groundbreaking finding on the extended b-metric, numerous authors have
documented various intriguing outcomes in this realm (see, for instance, [1-3, 6-9, 13] and the
pertinent references therein). First and foremost, we will revisit some definitions of different types
of generalized metric spaces, along with several theorems and characteristics of extended b,-
metric spaces, which will be utilized later.

Let X be a nonempty set, T:X — X and S:X — X are two self-mappings. We say that x € X
is acommon fixed pointof T and S if T(x) = x = S(x), and CFix(T) denotes the set of common

fixed points of T and S.

Definition 2.1 [2] LetT : X - Xanda: X X X — [0,00). We say that T is an a-orbital
admissible if, for all x,y € X, we have
a(x,Tx) > 1 = a(Tx,T?*x) > 1. (2.1)



Definition 2.2 [1] A set X is regular with respect to mapping a : X X X — [0, o) if, whenever
{x,}is asequence in X such that a(x,, x,4+1) = 1and a(x,41,x,) = 1forallnandx, - x €

X as n — oo, then there exists a subsequence {x, } of {x,} such that a(xy,,x) = 1 and

a(x, xn(k)) > 1 for all n.

Definition 2.3 [2] Suppose that T, S are two self-mappings on a complete extended-b metric space
(X, dg). Suppose also that there are two functions a, 8: X X X — [0, ) such that, forany x € X,
a(x,Tx) =2 1 = p(Tx,STx) =1,
and
B(x,Sx) =2 1 = a(Sx,TSx) = 1. (2.2)

Then we say that the pair S, T is an (a, #)-orbital-cyclic admissible pair.

Lemma 2.4 [2] Let (X, dg) be an extended b-metric space. If there exists q € [0, 1) such

that the sequence {x,} for an arbitrary x, € X satisfies lim 6(x,, Xy, ) < %
n,m-—oo
, and also
0 < dG (Xn+1:Xm) < qde (Xn—l'xm) (2-3)

forany n € N, then the sequence {x,} is Cauchy in X.

Definition 2.5 [13] Let X be anonempty set, T: X —» X,anda,B: X X X — [0,). We say
that T is an (a, B) —orbital-cyclic admissible mapping if
a(x,Tx) = 1implies f(Tx, T?x) > 1
and
B(x,Tx) =1 implies a(Tx,T?x) > 1 (2.4)

forallx € X.

Definition 2.6 [14] Given a mapping T: X = X and x, € X, for alln € N, the orbit of x, with
respect to T is defined as the following sequences of points ,
O(XO) == {xO, TxO, ey TnxO, } .



The subsequent findings correspond to those of EImabrouk and Alkaleeli [6-8] within an expanded

b,-metric framework.

Definition 2.7 [6] Let X be a nonempty setand 6: X X X X X — [1, o) be a mapping. A function
dg: X X X X X — [0,00) is an extended b,-metric on X if for all a,x,y,z € X, the following
conditions hold:
1) For every pair of distinct points x, y € X, there exists a point z € X such that dy(x,y,z) #
0,
2) If at least two of three points x, y, z are the same, then dg(x,y,z) = 0.
3) do(x,y,2) =do(x,2,y) =dg(y,x,2) = dg(y,2,x) = dg(z,x,y) = dg(z,y,x),  the
symmetry,
4) do(x,y,2z) <0(x,y,z)[dg(x,y,a) + dg(y,2z,a) + dy(z,x,a)] , the rectangle
inequality.
Then dg is called an extended b,-metric on X and the pair (X, dg) is called an extended b,-metric

space.

Remark 2.8. [6]
It is obvious that the class of an extended b,-metric space is larger than b,-metric space, because

if 0(x,y,z) = s, fors > 1 then we obtain the definition of a b,-metric space.

Example 2.9. [8] Let X = [0,1]. Define 6 : X X X x X — [1,) by

1+x+y+z
Q(x,y,z):ﬁ for all x,y,z € X.

And dg: X X X X X — [0,00) by

1
— if x,yv,z € (0,1 dx+y+#z
vz if x,v,z€(01] and x #y #z
_ 0 if x,y,z €[0,1] and at least two of x, y,
do (x,y,2) = and z areequal,
1
— if ,v € (0,1 d z=0.
[ if x,y€(0,1] and z

Then ( X, dg) is an extended b,-metric space .
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Definition 2.10. [9] Let {x, },en be a sequence in an extended b,-metric space (X, dg).
1. A sequence {x,} is a Cauchy sequence if and only if dg(x,, X, a) - 0, when n,m —
oo, forall a € X.
2. A sequence {x,} is convergent to x € X, if for all a € X, there exists x € X, such that

lim dg(x,,,x,a) = 0.
n—oo

3. An extended b,-metric space (X,dy) is called complete if every Cauchy sequence is

convergent sequence.

Definition 2.11. [7] Let (X, dg) be an extended b, —metric space. The extended b, — metric dy is
called continuous if
do(xp,x,a) =0 and dg(yn,y,a) >0 = dg(xn ,yn,a) — dg (x,y,a),

for all sequence {x, },{y, }inX and x,y,a € X.

Main Results

In this section, we introduce the notion of («, B)-orbital-cyclic admissible in the setting of extended
b,-metric spaces. Then, extend common fixed point theorems for pair of mappings in an extended b,-

metric space. Also, some examples in support of our main results are provided.

Definition 3.1
Suppose that T and S are two self-mappings on a complete extended b,-metric space (X, dg). Suppose

also that there are two functions a, B : X X X X X — [0, o) such that, for x,a € X,

a(x,Tx,a) =21 = PB(Tx,STx,a) =1,

(3.1)
B(x,Sx,a) =21 = a(Sx,TSx,a) = 1.

Then we say that the pair S, T is an (a, B)-orbital-cyclic admissible pair.
Lemma 3.2
Let (X, dg) be an extended b,- metric space. If there exists g € [0,1) such that the sequence {x,,} for an

arbitrary x, € X satisfies



lim 6(x,,x,,a) <-
n,m-—oo q

And
0 < dg(xp, Xpt1,a) < qdg(xp_1,%n, a) (3.2)

forany n € N, a € X, then the sequence {x,,} is Cauchy in X.
Proof

Let {x, },en b€ a given sequence. By employing inequality (3.2) recursively, we derive that
0< dG (xn: xn+1:a) =< qnde(xo'xpa)- (3-3)

Since q € [0,1), we find that

lim dg(xp, xpsq,0) =0,
n—-oo

On the other hand, by (iii), together with triangular inequality (iv), for p = 1, we derive that

d9 (xn' Xn+p» xn+1)
dg (xn' Xn+p a) < Q(xn, Xn+ps a) + do (xn+p: a, xn+1) ’
+d6 (a: Xn» xn+1)

6 (xn' Xn+p» a)dG (xn' Xn+p» xn+1)

< +9(xn,xn+p,a)d9(xn+p,a, xn+1) ,
| +9(xn' Xn+p» a)dG (a, Xn xn+1)
G(Xn, Xn+p, a)qnde (on X1, a)
< +9(xn: Xn+p» a)qnde (xO' X1, xn+p) ’

_+9 (xn' Xn4p, a)qnde (xn+p' a, xn+1)

g(xn' Xn+p» a)qnde (x0, %1, )
+9(xn' Xn+1 a)qnde (xO' X1, xn+p)
d9 (xn+1'xn+2' a) )
+6 (xn, Xntps a)0(xpt1, Xntps a) [+de (%ns1) Xna2s xn+p)
+dg (xn+2:xn+p: a)

IA




Q(xn, Xntp) a)q”

+9(xn, Xn+p» a)@(xnﬂ, Xn+p» a)qn+1 o (xor . xn+p)

+6 (xn: Xn+p» a)9 (xn+1v Xn+ps a)de (xn+2: Xn+ps a) ’

[ 60 (X, Xp4pr @) q" 1
| 00 Tup DO (e, Ty T
<] Foee e |[d9(x0'x1' a) + dg (%0, X1, Xn1p)]
l +9(xn, Xntp a)@(xn+1, Xn+p» a) ------ J
|2 0(Xn4p—2 Xn+pr @)0 (Xntp—1, Xnip, a)q™ Pt

n+p-1 i

= dg(xg,x,a) Z qinﬁ(xn+j,xn+p,a).
i=1 1

j=
Notice the inequality above is dominated by

n+p-1 i n+p-1 i
i | | i | |
Z q 9(xn+j, Xn+p» a) < 2 q B(xj,xn+p, a).
i=1 j=1 i=1 j=1

On the other hand, by employing the ratio test, we conclude that the series ¥:;2, a;,

where
i

a; = q' 1_[ 0(x;, Xp1p @)

j=1
Converges to some S € (0, o). Indeed,
. Qi1 .
fim =% = Jim a0(xi iy, a) < 1,

and hence we get the desired result, Thus, we have
oo l
S = Z qt 1_[ 0(xj, xn+p, @)
i=1  j=1
with the partial sum

i

Sp = Z qt 1_[ H(xj,xn+p,a).

(00}
i=1 j=1

Consequently, we observe, forn < 1, p < 1, then

d9 (xn: Xn+pr a) < qnde (xOler a) [Sn+p—1 - Sn—l]-

<

(3.4)



Letting n — oo in (3.4), we conclude that the constructive sequence {x,,} is Cauchy in the
extended b,-metric space (X, dg).

Theorem 3.3

Let T, S be two self-mappings on a complete extended b,-metric space (X, dg), such that that the
pair S, T forman (a, B)-orbital-cyclic admissible pair. Suppose that

i. Foreachx, € X

1—-k
lim 6(x,,xp,a) < —,
n,m-—oo k

where x,,, = Sxy,_1 and x,,41 = Tx,, foreachn € N;
ii.  there exists x, € X such that a(xy, Txy,a) = 1,V a € X;
iii.  either Sand T are continuous, or
iv. ifx, isasequence in X such that x,, - u, then a(u, Tu,a) = 1 and B(u, Su,a) > 1.

Moreover, if forall x,y € X and k € [0, %)

a(x,Tx,a)B(y,Sy,a)dg(Tx,Sy,a) < kldg(x,Tx,a) +dg(y,Sy,a)], (3.5)

then the pair of the mappings T, S possesses a common fixed point u, that is,

Tu=u=Su.

Proof

By assumption (ii), there exists a point x, € X such that a(x,, Txy, a) = 1. Take x; = Tx,

and x, = Sx,. By induction, we construct a sequence {x,} such that
Xop = SXop—1 and X,p41 = TXxy,, VN € N. (3.6)
We have a(x,, x1,a) = 1, and since (S, T) is an a, f-orbital-cyclic admissible pair, we get

a(xg,x1,a) = 1= B(Txy,STxy,a) = B(x1,%5,a) =1,
and
B(x_1,x2,a)21= a(Tx_1,TSx_1,a) = a(x_2,x_3,a) = 1.
Applying again (iii),
a(xy,x3,a) =1 = B(Tx,,STx,,a) = B(x3,x4,a) =1

and



B(x3,x4,a) =21 = a(Tx3,TSx3,a) = a(xy, xs,a) = 1.
Recursively, we obtain
a(Xon, Xon41,a) =2 1,V EN (3.7)
and

B(Xon41)Xone,a) =1, ¥n € N. (3.8)

Without loss of generality, we assume that x,, # x,,, for eachn € N,

Indeed, if x,,, = xp, 4+ for some ny € Ny, then u = x,, | forms a common fixed point for S and T,
which finalizes the proof. More precisely, to see that u is the common fixed point for S and T, we
shall examine the following two case. First, we assume that ng is even, thatis, n, = 2k.

In this case, we have x5, = X541 = Txqp, thatis, x, is a fixed point of T.

Now we shall prove that x,, = X541 = TXor = SXp.

Suppose on the contrary that

. By letting x = x5, and y = x,;,4 in(3.5) and keeping in mind (3.7) and dg (T X34, SX24+1,a) > 0
(3.8), we get that:

0 <dg(Xz+1, X2k+2, @) = dg(Tx2k, SX2p41, @)
< a(xap, Txok, @) B (X241, SX2k+1, D)o (T X2k, SXop41, @)

< kl[dg(x2k, Tx2k, @) + dg(Xok41, SX2k4+1, D],

which is a contradiction. Hence, we conclude that dg(Tx2k, SX2k4+1, @) =0,
and Xy = Xope1 = TXop = SXop41, that is X5 = X941 = u is a common fixed point of T and
S. Second, we assume that ng is odd, that is, ny = 2k — 1.

Xn # Xpp1foreach n € Ny . (3.9
In this case, we have X, _1 = Xop_141 = X2k = SX3x_q, that is, x5, _4 is fixed point of T
Now we shall prove that

Xok—1 = X2k = SXog—1 = TXpg.
Suppose on the contrary that dg (Tx,y, Sx35_1,a) > 0.

By letting x = x55_; and y = x5 in (3.5) and keeping in mind (3.7) and (3.8) We get that
0 < dg(xzn+1,X2n, @) = dg(Txon, SX2p-1, @)
< a(xan, Tx2n, @) (X2n-1, SX2n-1, ) dg (Tx2n, SX2p-1, @)
< kldg(x2n, Txzn, @) + dg(X2p-1, Sxon—1, @)]
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= kldg(X2n, X2n+1, @) + dg(Xan_1, X2n, )], (3.10)

and

de(xZn: x2n+1:a) < qu (xZn—1:x2n'a) (3-11)

for eachn € Ny, where g = ﬁ < 1withk € [0, %)

Combining (3.8) and (3.11), we can conclude that

dG(xm' xm+1'a) < qd@(xm—lvxmr a) (3-12)

for allm € N. From Lemma 3.2, taking into account (i),

I p < 1—-k 1
n,r}],llloo (xn; xml a) k - q ’

we obtain that {x,,} is a Cauchy sequence.

By completeness of (X, dg), there is some point u € X such that lim x,, = u.

n-oo
Naturally, we also have
Xop = U and Xgpyq — U (3.13)
Due to the continuity of the mappings T and S, we get
u=lim x,,1 = lim Tx, =T lim x, = Tu,
n—co n—oco n—oco

and

u = lim x,,1 = lim Sx,, = § lim x,, = Su.

n-c n-co n-o
Let us consider now the alternative hypothesis (iv).
Taking x = uand y = x5,44 in (3.5) and taking into account (3.8), we get
do(Tu, X2n42,a) = dg(Tu, Txzp41,@)

< a(u, Tu, a)B(dg(Tw, Sxzn41, A)X2n41, SXont1, @)

< kldg(u, Tw, a) + dg(x2n41, SX2n42, A)]- (3.14)
Letting n — oo, we obtain

do(Tu,u,a) = lim dg(Tu, x3,42,a)
n—oo
<k rlll—{lc?o [do(u, Tu, a) + dg(X2n41, X2n+2,@)]

=kdo(u,Tu,a) < dg(u,Tu,a), (3.15)
which implies dg (Tu, u,a) = 0. Hence, we get that Tu = u.

Analogously, regarding (3.7) and (3.15), we observe that

11



dg(x2n4+1,Su,a) = dg(Txzp, Su, @)

< a(Xyn, Txop, @) (u, Su, a)dg (Tx,y,, Su, a)

< k[d9 (xZTl' TxZTL) a) + d9 (u! Su, a)]
Now, letting n — oo in the inequality above, we derive that

do(u,Su,a) = T&im do(X2n41,Su, a)

< k lim [dg (x5, Tx2n, @) + dg(u, Su, a)]
n—-oo
= kdg(u,Su,a)
< dg(u,Su,a),

Hence, we find that Su = u. Accordingly, we conclude that T and S have a common fixed point w.
Example 3.4

LetX = [0,1] and dg: X X X X X — [0, o0) defined by

1
- f » € 0F1 4
vz orx,y,z€ (01]x #y # z
1
— forx,y € (0,1] and z = 0,
do(x,y,z) =% xy .
0 forx,y,z € (0,1]
and at least two of x, y
\ and z are equal
when
1+x+y+z
_ if € (0,1
0(x,y,2z) = x+y+z ifx,y,z€(01],
1 ifx=y=2z=0.
Then (X, dg) is an extended b,-metric space.
LetT:X —» X and S: X — X are defined as
( 1, if x==
: 1 1, itxefd
) Irx R
T(x) = > if X=q Sx) = 4’2,
x+1 X, otherwise
> otherwise

Respectively, and two functions a, 8: X X X X X — [0, o0) defined by

cwpa=lt Her0l(11g) G1g) Gra)
0,

4’2’3
otherwise
and

12



o= (113 413 Go3),

0, otherwise
we show that the pair T, S forms an (a, B)-orbital-cyclic admissible pair.

Indeed, for x = 1,

1 1
a(1,Tl,a) =«a (1,1,5) >1-pB(T1,5T1,a) = (1,1,—) >1,

3
and
1 1
B(1,51,a) =B (1,1,5) >1- a(51,TS1,a) = a(1,1,§> > 1.
Forx=%,
1 1 1 1 1 1 1
a(E,TE,a>=a<E,1,§)Z1—>,8(T§,ST§,a>=ﬁ(1,1,§)21,
and
1 1 1 1 1 1 1
3(5'55;0)=I3(§,1,§)21—>a(S§,TS§,a)=a(1,1,§)21.
Forx=%,
1 1 111 1 1 1 1
«(3730)=a(373)21-8(13575.0) =6 (303) 22
and

We have thus proved that T is « orbital admissible and sure, because

a G, T i, a) = 1 assumption(ii) is satisfied.

If x, € E,%, 1}, then xy = T™xy = 1, so
I 0 3 3 1-k
s O X @) =5 <3 =57
where we choose k = § < %

Otherwise. For each xy € X — {%, %, 1}, we have
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k=1
and
lim X, =
n—-oo
So,
3 1—-k
lim O(xy,xpma) =<3 =——m
n,m-co 2 k

Hence, (i) is also verified.

We have
1 1 11 1 11
d(1113)=0 do(z733)=6  de(3Ty)=2
1 1 11 1 11
4 (1513)=0. do(3.553)=6 @ (355.3)=12

and

1 1 11
dg (Tl,Sl,g)ZO, dg(Tl,S—, ):0, dg (T1,51,5>:0,
1 1 1 11 1 11
dg <T5,51,§>=0, dg (T_’SEJ_)ZO’ dg (TE,SZ,§)=O,
1
2

d<T1511>_6 d(T S
0 4' I3 — 0, (2]

Because in the other cases a(x,y,a) = 0 and S(x,y,a) = 0.

It is enough to investigate the following situations:

Case (a): Forx € { }and Yy E { } a=- Then dg(Tx,Sy,a) = 0.

274
So inequality (3.5) is satisfied.
Case (b): Letx = i, y=1 a= % Then

6=d (Tl S1 )— (1 ! 1) (lll)d (Tl S1 1)
— Ug 4' ,a)|=a 4'2'3 B ) '3 0 4’ ’3

s%[dg(l L 1)+d9<1 S1, ;)] %[24+0]

8.
4’ 4’3

Case (¢): Letx =

4>|>-=
<
Il

N
Q
Il
|
—
>
15}
S

6=d <T151 )_ (1 T11 (151 1)d (T s 1)
“G )TNy 43)ﬁ 2'3)% 2’3
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Case (d): Letx =
6=d (Tl 51 )_ (1 Tl 1) (1 Sl 1)d (Tl 51 1)
=do\Tgps5p) =@ T13)P@573) e \T1523
<1 d (1 T1 1>+d (1 S1 1) —1[24+12]——36—12
<3l (G T73)+ % (3573)] =3 BE

Therefore, all conditions of Theorem 3.3 are satisfied and t the pair of the mappings 7, S
possesses a common fixed point u = 1.

We will now examine the (a, B)-orbital-cyclic admissible mappings within the context of an extended b,-
metric space.

Definition 3.5

Let X be anonemptysetT: X » Xand e, : X X X X X — [0, ). We say that T is an (a, 8)-

orbital-cyclic admissible mappings if

a(x,Tx,a) > 1 implies B(Tx,T?x,a) > 1,
(3.16)
B(x,Tx,a) >1 implies a(Tx,T?x,a) > 1.

forall x € X.

Corollary 3.6

Let T be a self-mapping on a complete extended b,-metric space (X, dg), such that the mapping T form
an (@, B)-orbital-cyclic admissible mapping. Suppose that

1. i. For each x¢ € X,

1-k
lim O(x,, x,a) <—,
n,m-—co k

where x,, = T"xg,n=1,2, ...;

15



ii.  there exists X, € X such that a(xy, TXy,a) = 1 and B(xq, TXq,a) = 1;
1il. either T is continuous, or

iv.  ifx, is a sequence in X such that x, — u, then a(u, Tu,a) = 1 and B(u, Tu,a) > 1.
. 1
Moreover, if for all x,y € X and k € [0,5)

a(x,Tx,a)B(y, Ty, a)de(Tx, Ty, a) < kldg(x,Tx,a) + dg(y, Ty, a)l, (3.17)
then the pair of the mappings T possesses a fixed point u, that is, Tu = u.

on a theoretical basis.

Example 3.7
LetX = R. Define dg: X X X X X — [0, ) by

x? +y? + 22, XEY+EZEX,
d@(xry' Z) =
0, if at least two of x, y and z are equal.

And define 8: X X X X X - [1,0)
0(x,y,2z) = |x| + |yl + |z| + 1.
Then (X, dg) is an extended b,-metric space.

Let the self-map T: X — X be defined by

X
— ifx € [0,1)
T(x)=1{8

v—x2+3x—2 ifx€[1,2].

Define also a, f € X X X X X — [0, ) by

2 ifx,y,a €[0,1] 1 ifx,y,a €[0,1]
alx,y,a) = , Blx,y,a) =<2 ifx=2,y=0,a=% .
0 otherwise, 0 otherwise,

We show that T is (a, 8)-orbital-cyclic-admissible.

Let x,y,a € X such that a(x,Tx,a) = 1 and B(x,Tx,a) = 1. Then x,y,a € [0,1). On the other hand, if
x €[0,1),then Tx < 1and T?x < 1.

16



It follows that a(Tx, T?x,a) = 1 and S(Tx, T?x,a) > 1. Thus, the assumption holds.

For x =0, we have T0O = 0 and a(0,T0,a) = 1, respectively, $(0,T0,a) = 1, so assumption (ii) is

satisfied. Let now {x,,} be a sequence in X such that x,, — x.
Then {x,,} © [0,1] and x, a € [0,1]. This implies that a(x, Tx,a) > 1.

For xo € [0,1), we get T?xo = ~2and lim 6(T"xo, T™x,,a) = 1.

n,m—oo

If xy € [1,2], Txy < % ,and lim O6(T™xy, T™xy,a) = 1. So assumption (i) is satisfied for k = é We

n,m-co

have the following cases:
Case (a). Forx,y € [0,1) and a = %.

If x#y#zthen dg(x,y,z) =x%+y%+ 22

et =) + @)+ )

1
=a(x2 +y2+1),

2

do(x,Tx,a) = x> + (g)z + (%)

2

do(y,Ty,a) = y* + (g)2 + (%)

_1 65x2 +1),= ! 65y2 + 1)
= 6 (05" T 1), =7 (657 + 1),
Replaced in Corollary 3.6 we get
1
a(x,Tx,a) B(y,Ty,a)de(Tx, Ty, a) < 3 [do(x,Tx,a) + dg(y,Ty,a)]

or

65x2 + 65y2 + 2
192 ’

L A 1[ (65x2 + 65y2 + 2)] -
32 3164
which is true for any x,y € [0,1),a = % .

Ifx =y =2zthendy(Tx,Ty,a) = 0.

So, inequality (3.5) is satisfied, which is true for any x,y € [0,1).

17



1

Case (b). Forx =1, y=2 anda:8

We know that a(1,T1,a) = a(1,0,a) > 1 and B(T1,T?1,a) = £(0,0,a) > 1.
Also B(2,T2,a) = B(2,0,a) > 1 and a(T2,T?2,a) = «(0,0,a) > 1.
But in this case Corollary 3.6 is obvious, because dg(T1,T2,a) = 0.

Case (¢). Forx € [0,1), y=2anda = %, Corollary 3.6 becomes

1
a(x,Tx,a) f(2,T2,a)dg(Tx,T2,a) < 3 [do(x,Tx,a) + dg(2,T2,a)]

or

2571  65x? +258
64] 192

x2+1<1 1(652+1)+
16 3164 2"

Case (d). For all other cases, a(x,Tx,a) = 0 or B(x,Tx,a) = 0, and for this reason inequality (3.17)
holds. Therefore, all the conditions of Corollary 3.6 are satisfied and T has a fixed-point, x = 0.

Corollary 3.8

Let T be a self-mapping on a complete extended b,-metric space (X,dg), such that T is an a-orbital

admissible mapping. Suppose that

i.  Foreach x( € X,

1-k
lim 6(x,,xy,a) <——,
n,m—oo k

where x, = T"xg,n = 1,2, ...;
ii.  there exists Xy € X such that a(xy, Txq,a) = 1;
iii.  either T is continuous, or

iv.  if x, is a sequence in X such that X, — u, then a(u, Tu,a) > 1.
. 1
Moreover, if for all x,y € X and k € [0, E)

a(x,Tx,a)a(y, Ty,a)de(Tx,Ty,a) < kldg(x,Tx,a) + dg(y,Ty,a)], (3.18)

then the pair of the mappings T possesses a fixed point u, that is, Tu = u.

Example 3.9
18



Let X = R be endower with extended b,-metric space dg: X X X X X — [0, ), defined by dg(x,y,2) =
x? +y? + 72,
where, 0: X X X X X — [1, o) defined by
0(x,y,2z) = |x| + |yl + |z| + 1.
Let T:X — X such that

x+1
T(x)={ 3

ifx € [0,1]

ifx € (1,2]

N R

Define also a, € X X X X X — [0, ) by

a(x,y,a) = { 1 if(ny.a)€ {[0'%] X [0’%]} U {E' 1] X E'l] '}'

0 otherwise,
we prove that Corollary 3.8 can be applied to T for k = %, but Theorem 3.3 cannot be applied to T. We
show that T is an a-orbital admissible mapping. x,y,a € [0,%] then Tx < %and T?x < 1.
Thus, a(x,Tx,a)=>1 implies a(Tx,T%x,a) > 1.
Similarly, we get that a(x, Tx, a) = 1 implies a(Tx, T?x,a) = 1forallx,y,a € [%, 1],so T is an a-orbital
admissible. In reason of the above arguments, «(0,70,a) = « (O, %, a) > 1.

Thus, the assertion (ii) holds.

n
Note that, for each xq € X, T"xy = Yp=; G) + ;C—fl and lim T"x, = % Hence,
Nn—00
lim 6(T™(x), T™(x),@) = 2.2 +1=2<3=2F
n,m-oo 2 k

So assumption (i) is satisfied, and because (%, T%) =q ( %,%) > 1, assumption (iv) is also satisfied. Let

xX,y,€E [0%] orx,y € E,l].We have

do(Tx,Ty,a) = a(x,Tx,a) a(y,Ty,a)de(Tx, Ty, a)

(x+1>2+<y+1)2+(1>2_ x4+ y? +2x+2y+3
3 3 3/ 9 '

And
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1 10x2+2x+2+10y2+2y+2
4 9 9

k [dg(x, Tx! a) + d9 (}’; Ty! a)]

_10x* + 10y% +2x + 2y + 4
B 36 '

Replaced in inequality (3.3.3), we get

x2+y2+2x+2y+3<10x2+ 10y2 +2x+2y + 4
9 - 36

4x? + 4y2+8x+8y+12< 10x% + 10y? +2x + 2y + 4
36 - 36

or
4x% + 4y? +8x+ 8y + 12 < 10x% + 10y2 +2x+ 2y + 4
6x% + 6y —8x—8y —8=>0.

Hence, inequality (3.18) is satisfied. In other cases, inequality (3.18) is obviously satisfied, because

a(x,y,a) = 0. Therefore, all conditions of Corollary 3.8 are satisfied and T has a unique fixed point, x =
1
>

4. Uniqueness of a fixed point

Notice that in this section, we are investigating the existence of common fixed points of certain

operators. To ensure the uniqueness of a fixed point, we will consider the following hypothesis.

(A) Forall x,y € CFix(T), we have a(x,Tx,a) = 1 and B(y,Sy,a) = 1.
Here, CFix(T) denotes the set of common fixed-point of T and S.
Theorem 4.1
Adding condition (A) to the hypotheses of Theorem 3.3, then u is the unique fixed-point of T
Proof
Suppose on the contrary, that v is another fixed-point of T. From (A), there exists v € X such that

a(x,Tx,a) = 1and B(y,Sy,a) > 1 (4.1).
Since T satisfies (3.5), we get that
dg(Tu,Sv,a) < a(u,Tu,a)B(w,Sv,a)dg(Tu, Sv, a)

< k[dg(u, Tu,a) + dg(v, Sv, @)],
20



which yields that dg(u,v,a) < 0.

Since the inequality above is possible only if dg (u, v, @) = 0, that is, u = v. This is a contradiction.

Thus, we proved that u is the unique fixed-point of T'.
Conclusions

In this paper, we explored the presence of common fixed points for a specific mapping ((S, T) and
(a, B) Orbital cyclic-admissible mapping), within the context of an extended b,-metric space. The
results we present encompass several well-known fixed-point theorems found in existing literature.

Additionally, we provided some examples to demonstrate our results.
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