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Abstract- In this paper, we consider the Bayesian estimation 

of the parameters and reliability function for a Cosine inverse 

log compound Rayleigh distribution under squared error and 

squared logarithmic loss functions. We use Lindley’s 

approximation to compute the Bayesian estimates. This method 

is evaluated using mean square error through simulation study 

with varying sample size.  
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I. INTRODUCTION 

Statistical distributions are fundamental tools for describing 

real-world phenomena. Numerous classical distributions have 

been extensively used over the past decades for modelling data 

in several areas. There is always a clear need for extending and 

modifying the existed forms of such distributions. Such 

extension or modification are commonly achieved by combing 

classical distributions with generalized ones. Sometimes, it is 

also preferable to add one parameter or more to the well-

known classical parametric distributions which is considered 

more flexible in modelling data. The primary aim of this 

research is focusing on the family of cosine distributions 

developed by Souza et al. [10]. Several notable trigonometric 

distributions have been introduced in the literature, for 

instance, one can consult Tomy et al. [11], Isa et al., [3, 4, 5, 

6] and Mustapha et al., [8].  

The CDF and PDF of the Cosine-G family are respectively 

given as: 

𝐹(𝑥; 𝜉) = 1 − 𝐶𝑜𝑠 {
𝜋

2
𝐺(𝑥; 𝜉)}                                                 (1) 

𝑓(𝑥; 𝜉) =
𝜋

2
𝑔(𝑥; 𝜉)𝑆𝑖𝑛 {

𝜋

2
𝐺(𝑥; 𝜉)}                                 (2) 

where  𝑔(𝑥; 𝜉) and 𝐺(𝑥; 𝜉) are the PDF and CDF of the 

baseline distribution. 

 

Rasheed [9] introduced log compound Rayleigh distribution 

by logarithmic transformation to the random variable of 

compound Rayleigh distribution with its basic reliability 

properties, order statistics and maximum likelihood  

 

 

 

estimation. The proposed model will be named inverse log 

Compound Rayleigh (ILCR) distribution. Its CDF and PDF 

are given respectively by: 

𝐺(𝑥; 𝜃, 𝜆) = 𝜆𝜃(𝜆 + 𝑒2/𝑥)−𝜃                                               (3) 

𝑔(𝑥; 𝜉) = 2𝜃𝜆𝜃𝑥−2𝑒2 𝑥⁄ (𝜆 + 𝑒2/𝑥)−(𝜃+1)                          (4) 
Then the reliability of ILCR distribution is given by: 

𝑅(𝑡) = 1 − 𝜆𝜃 (𝜆 + 𝑒
2
𝑡)
−𝜃

; 𝑡 > 0                                     (5) 

Recently, Bayesian estimation approach has receivable great 

attention by a numerous of researchers. Bayes analysis is an 

important approach in statistical modelling, which formally 

seeking to use of prior information and Bayes theorem 

provides the formal basis for utilizing this information. This 

paper proposes the Bayesian estimation procedures for the 

unknown parameters of Cosine inverse log compound 

Rayleigh distribution by using Lindley’s approximation 

technique.  

The remainder of this paper is structured as follows: in Section 

2, we introduced Cosine inverse log compound Rayleigh 

distribution. The Bayes estimates of the unknown parameters 

are obtained in Section 3 using Lindley’s approximation. 

Simulation studies are presented in Section 4. Finally, we 

conclude the paper in Section 5. 

 

II. COSINE INVERSE LOG COMPOUND RAYLEIGH 

DISTRIBUTION 

In this section, the Cosine inverse log compound Rayleigh 

distribution (CILCR) has been introduced. The CDF of ILCR 

distribution can be obtained by inserting Equation (3) in 

Equation (1) and is given by: 

𝐹(𝑥) = 1 − 𝐶𝑜𝑠 {
𝜋

2
𝜆𝜃 (𝜆 + 𝑒

2
𝑥)
−𝜃

} ;   𝜃, 𝜆 > 0                  (6) 

and the corresponding PDF and reliability function, 

respectively are given by  

𝑓(𝑥/𝜃, 𝜆) = 𝜋𝜃𝜆𝜃𝑥−2𝑒2 𝑥⁄ (𝜆 + 𝑒
2
𝑥)
−(𝜃+1)

𝑠𝑖𝑛 {
𝜋

2
𝜆𝜃 (𝜆 +

𝑒
2
𝑥)
−𝜃
} ;  𝜃, 𝜆 > 0                                                                     (7) 
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and 

𝑅(𝑡) = 𝐶𝑜𝑠 {
𝜋

2
𝜆𝜃 (𝜆 + 𝑒

2
𝑡)
−𝜃

} ;   𝜃, 𝜆 > 0                             (8) 

Let 𝒙 = (𝑋1, 𝑋2, … , 𝑋𝑛) be a random vector having 

probability density function (7). Then the likelihood function 

is given by: 

𝐿(𝜃, 𝜆/𝒙) = (𝜋𝜃𝜆𝜃)
𝑛
  𝑒∑ 2 𝑥𝑖⁄𝑛

𝑖=1 ∏ {𝑥𝑖
−2 (𝜆 +𝑛

𝑖=1

𝑒
2

𝑥𝑖)
−(𝜃+1)

𝑆𝑖𝑛 {
𝜋

2
𝜂𝑖}},                                                                       (9)  

where 

 𝜂𝑖(𝜃, 𝜆) = 𝜆
𝜃 (𝜆 + 𝑒

2

𝑥𝑖)
−𝜃

 ; 𝑖 = 1,2, … , 𝑛.  

For simplification we may use 𝜂𝑖 instead of 𝜂𝑖(𝜃, 𝜆). 
 

III. BAYESIAN ESTIMATION 

In this section, we have obtained the Bayes estimates for the 

unknown parameters 𝜃 and 𝜆, and reliability function. Squared 

error and squared logarithmic loss functions are used. We 

assume that 𝜃 and 𝜆 are independently distribution as Gamma 

(𝑎, 𝑏) and Gamma (𝑐, 𝑑) priors. Therefore, the joint prior is: 

𝘨(𝜃, 𝜆) ∝ 𝘨1(𝜃)𝘨2(𝜆),                                                   (10) 
where 

𝘨1(𝜃) =
𝑏𝑎

𝛤(𝑎)
𝜃𝑎−1𝑒−𝑏𝜃;    𝑎, 𝑏 > 0                                    (11) 

𝘨2(𝜆) =
𝑑𝑐

𝛤(𝑐)
𝜆𝑐−1𝑒−𝑑𝜆;    𝑐, 𝑑 > 0                                          (12) 

 

Based on the likelihood function (9) and the joint prior density 

(10), the joint posterior is given as 

𝑃(𝜃, 𝜆/𝒙) =
𝐿(𝜃,𝜆/𝒙)𝘨(𝜃,𝜆)

∫ ∫ 𝐿(𝜃,𝜆/𝒙)𝘨(𝜃,𝜆) 𝑑𝜃 𝑑𝜆
∞
0

∞
0

                                 (13) 

 

Therefore, the Bayes estimate of any function of 𝜃 and 𝜆, say 

𝑢(𝜃, 𝜆) under the squared error loss function (SELF) is 

𝑢̂𝐵𝑆(𝜃, 𝜆) = 

𝐸𝜃,𝜆/𝒙[𝑢(𝜃, 𝜆)] =
∫ ∫ 𝑢(𝜃,𝜆)𝐿(𝜃,𝜆/𝒙)𝘨(𝜃,𝜆) 𝑑𝜃 𝑑𝜆

∞

0

∞

0

∫ ∫ 𝐿(𝜃,𝜆/𝒙)𝘨(𝜃,𝜆) 𝑑𝜃𝑑𝜆
∞

0

∞

0

                     (14) 

Also, the Bayes estimate of 𝑢(𝜃, 𝜆) using squared logarithmic 

loss function (SLLF) which is proposed by Brown [1] and has 

been studied by Feroze and Aslam [2] is 

 

𝑢̂𝐵𝑆(𝜃, 𝜆) = 𝑒𝑥𝑝 [𝐸𝜃,𝜆/𝒙[log(𝑢(𝜃, 𝜆))]],                               (15) 

where 

𝐸𝜃,𝜆/𝒙[log(𝑢(𝜃, 𝜆))] =
∫ ∫ log(𝑢(𝜃,𝜆))𝐿(𝜃,𝜆/𝒙)𝘨(𝜃,𝜆) 𝑑𝜃𝑑𝜆

∞

0

∞

0

∫ ∫ 𝐿(𝜃,𝜆/𝒙)𝘨(𝜃,𝜆) 𝑑𝜃 𝑑𝜆
∞

0

∞

0

       (16) 

 

It may be noted here that (14) and (16) do not simplify to 

nice closed form. In this case Lindley’s approximation can be 

used to obtain the Bayes estimators for the parameters. 

 

3.1 Lindley Approximation Method 

Lindley [7] proposed a procedure to approximate the integrals 

usually occurred in Bayes estimator, which includes the 

posterior expectation is expressible in the form of ratio of 

integral as follow 

𝐼(𝒙) = 𝐸(𝑢(𝜃, 𝜆)/𝒙) =
∫(𝜃,𝜆)𝑢(𝜃,𝜆)𝑒

𝐿(𝜃,𝜆)+𝐺(𝜃,𝜆)𝑑(𝜃,𝜆)

∫(𝜃,𝜆)𝑒
𝐿(𝜃,𝜆)+𝐺(𝜃,𝜆)𝑑(𝜃,𝜆)

,       (17) 

 

where  𝑢(𝜃, 𝜆) is a function of 𝜃 and 𝜆 only, 𝐿(𝜃, 𝜆) is the log-

likelihood function and  𝐺(𝜃, 𝜆) is log of joint prior density. 

The ratio of integral of the from (17) can be approximation as 

𝐼(𝑥) = 𝑢(𝜃, 𝜆) +
1

2
[(𝑢11 + 2𝑢1𝜌1)𝜎11 + (𝑢21 + 2𝑢2𝜌1)𝜎21 +

(𝑢12 + 2𝑢1𝜌2)𝜎12 + (𝑢22 + 2𝑢2𝜌2)𝜎22] +
1

2
[(𝑢1𝜎11 +

𝑢2𝜎12)(𝐿111𝜎11 + 𝐿121𝜎12 + 𝐿211𝜎21 + 𝐿221𝜎22) + (𝑢1𝜎21 +

𝑢2𝜎22)(𝐿211𝜎11 + 𝐿122𝜎12 + 𝐿212𝜎21 + 𝐿222𝜎22)]                    (18) 
 

Here 

𝑢1 =
𝜕𝑢(𝜃,𝜆)

𝜕𝜃
, 𝑢2 =

𝜕𝑢(𝜃,𝜆)

𝜕𝜆
, 𝑢11 =

𝜕2𝑢(𝜃,𝜆)

𝜕𝜃2
, 𝑢12 =

𝜕2𝑢(𝜃,𝜆)

𝜕𝜃𝜕𝜆
 , 

𝑢22 =
𝜕2𝑢(𝜃,𝜆)

𝜕𝜆2
, 𝜌1 =

𝜕𝐺(𝜃,𝜆)

𝜕𝜃
, 𝜌2 =

𝜕𝐺(𝜃,𝜆)

𝜕𝜆
, 𝐿11 =

𝜕2𝐿(𝜃,𝜆)

𝜕𝜃2
, 

𝐿12 =
𝜕2𝐿(𝜃,𝜆)

𝜕𝜃𝜕𝜆
, and 𝐿22 =

𝜕2𝐿(𝜃,𝜆)

𝜕𝜆2
, 𝐿111 =

𝜕3𝐿(𝜃,𝜆)

𝜕𝜃3
, 𝐿112 =

𝜕3𝐿(𝜃,𝜆)

𝜕𝜃2𝜕𝜆
, 𝐿122 =

𝜕3𝐿(𝜃,𝜆)

𝜕𝜃𝜕𝜆2
, 𝐿222 =

𝜕3𝐿(𝜃,𝜆)

𝜕𝜆3
 and 𝜎𝑖𝑗 =

(−
1

𝐿𝑖𝑗
) , (𝑖, 𝑗), 𝑖 = 1,2.   

we have 

   
 
    𝜌

1
=
(𝑎−1)

𝜃
− 𝑏      and     𝜌2 =

(𝑐−1)

𝜆
− 𝑑 

𝐿(𝜃, 𝜆) = 𝑛 log𝜋 + 𝑛 log 𝜃 + 𝑛𝜃 log 𝜆 + ∑
2

𝑥𝑖
− 2∑ log 𝑥𝑖

𝑛
𝑖=1 −𝑛

𝑖=1

(𝜃 + 1)∑ log (𝜆 + 𝑒
2

𝑥𝑖)𝑛
𝑖=1 + ∑ log 𝑆𝑖𝑛 {

𝜋

2
𝜂𝑖}

𝑛
𝑖=1                    (19) 

 

From (19), we obtain the quantities 

𝐿1 =
𝑛

𝜃
+ 𝑛 log 𝜆 −∑log (𝜆 + 𝑒

2
𝑥𝑖)

𝑛

𝑖=1

+∑cot {
𝜋

2
𝜂𝑖}

𝑛

𝑖=1

{
𝜋

2
𝜂𝑖 (log 𝜆

− log (𝜆 + 𝑒
2
𝑥𝑖))} 

 

𝐿2 =
𝑛𝜃

𝜆
− (𝜃 + 1)∑

1

(𝜆 + 𝑒
2
𝑥𝑖)

𝑛

𝑖=1

+∑ cot {
𝜋

2
𝜂𝑖}

𝑛

𝑖=1

{
𝜋

2
𝜃𝜂𝑖 (𝜆

−1 − (𝜆 + 𝑒
2
𝑥𝑖)

−1

)} 

 

𝐿11 = −
𝑛

𝜃2
+∑(cot {

𝜋

2
𝜂𝑖}

𝑛

𝑖=1

− (
𝜋

2
𝜂𝑖 csc

2 {
𝜋

2
𝜂𝑖})) (

𝜋

2
𝜂𝑖 (log 𝜆

− log (𝜆 + 𝑒
2
𝑥𝑖))

2

) 



                 Academy journal for Basic and Applied Sciences (AJBAS)                           Volume 7, issue 2, 2025. 

  

3 
DOI:10.5281/zenodo.18202685 

𝐿12 = 𝐿21 =
𝑛

𝜆
−∑

1

(𝜆 + 𝑒
2
𝑥𝑖)

𝑛

𝑖=1

+∑(cot {
𝜋

2
𝜂𝑖}(

𝜋

2
𝜂𝑖 (𝜆

−1

𝑛

𝑖=1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)(1

+ 𝜃 log 𝜆 − 𝜃 log (𝜆 + 𝑒
2
𝑥𝑖))))

− (csc2 {
𝜋

2
𝜂𝑖} 𝜃 {

𝜋

2
𝜂𝑖}

2

(𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)(log 𝜆 − log (𝜆 + 𝑒
2
𝑥𝑖))) 

 

𝐿22 = −
𝑛𝜃

𝜆2
+ (𝜃 + 1)∑

1

(𝜆 + 𝑒
2
𝑥𝑖)

2

𝑛

𝑖=1

+∑
𝜋

2
𝜃𝜂𝑖 (cot {

𝜋

2
𝜂𝑖}(𝜃 (𝜆

−1

𝑛

𝑖=1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

− 𝜆−2 + (𝜆 + 𝑒
2
𝑥𝑖)

−2

)

− csc2 {
𝜋

2
𝜂𝑖}(

𝜋

2
𝜃𝜂𝑖 (𝜆

−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

)) 

 

𝐿111 =
2𝑛

𝜃3
+∑(log 𝜆

𝑛

𝑖=1

− log (𝜆

+ 𝑒
2
𝑥𝑖))

3

(2 (
𝜋

2
𝜂𝑖)

3

cot {
𝜋

2
𝜂𝑖} csc

2 {
𝜋

2
𝜂𝑖}

−
3

4
csc2 {

𝜋

2
𝜂𝑖} (𝜋𝜂𝑖)

2 + cot {
𝜋

2
𝜂𝑖} (

𝜋

2
𝜂𝑖)) 

𝐿112 = 𝐿211 =∑𝜋𝜃𝜂𝑖 cot {
𝜋

2
𝜂𝑖}

𝑛

𝑖=1

csc2 {
𝜋

2
𝜂𝑖} (𝜆

−1

− (𝜆

+ 𝑒
2
𝑥𝑖)

−1

)(
𝜋

2
𝜂𝑖 (log 𝜆 − log (𝜆 + 𝑒

2
𝑥𝑖)))

2

+ 𝜋𝜂𝑖 (log 𝜆 − log (𝜆 + 𝑒
2
𝑥𝑖))(𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)(cot {
𝜋

2
𝜂𝑖} (1

+
𝜃

2
log 𝜆 −

𝜃

2
log (𝜆 + 𝑒

2
𝑥𝑖))

− csc2 {
𝜋

2
𝜂𝑖} (

𝜋

2
𝜂𝑖 (1

+ 𝜃 log 𝜆 − 𝜃 log (𝜆 + 𝑒
2
𝑥𝑖))))

−
𝜋2

4
𝜃𝜂𝑖

2 (𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

) csc2 {
𝜋

2
𝜂𝑖} (log 𝜆

− log (𝜆 + 𝑒
2
𝑥𝑖))

2
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𝐿122 = 𝐿221 = −
𝑛

𝜆2
+∑

1

(𝜆 + 𝑒
2
𝑥𝑖)

2

𝑛

𝑖=1

+∑−csc2 {
𝜋

2
𝜂𝑖}(

𝜋2

2
𝜃𝜂𝑖

2 (𝜆−1
𝑛

𝑖=1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

(1

+ 𝜃 log 𝜆 − 𝜃 log (𝜆 + 𝑒
2
𝑥𝑖)))

− csc2 {
𝜋

2
𝜂𝑖}

(

 
 𝜋2

4
𝜃𝜂𝑖

2(𝜃 (𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

− (𝜆−2 − (𝜆 + 𝑒
2
𝑥𝑖)

−2

))(log 𝜆

− log (𝜆 + 𝑒
2
𝑥𝑖))

)

 
 

+ cot {
𝜋

2
𝜂𝑖} csc

2 {
𝜋

2
𝜂𝑖}(

𝜋3

4
𝜃2𝜂𝑖

3 (𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

(log 𝜆

− log (𝜆 + 𝑒
2
𝑥𝑖)))

+ cot {
𝜋

2
𝜂𝑖}

(

 
 
(𝜋𝜃𝜂𝑖 (𝜆

−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

(1

+
𝜃

2
log 𝜆 −

𝜃

2
log (𝜆 + 𝑒

2
𝑥𝑖)))

− (
𝜋

2
𝜂𝑖 (𝜆

−2 − (𝜆 + 𝑒
2
𝑥𝑖)

−2

)(1
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+ 𝜃 log 𝜆 − 𝜃 log (𝜆 + 𝑒
2
𝑥𝑖)))

)

 
 

 

𝐿222 =
2𝑛𝜃

𝜆3
− (𝜃 + 1)∑

2

(𝜆 + 𝑒
2
𝑥𝑖)

3

𝑛

𝑖=1

+∑cot {
𝜋

2
𝜂𝑖} (

3

2
𝜋𝜃2𝜂𝑖 (𝜆

−2 (𝜆

𝑛

𝑖=1

+ 𝑒
2
𝑥𝑖)

−1

(1 − 𝜃) + 𝜆−1 (𝜆 + 𝑒
2
𝑥𝑖)

−2

(1 + 𝜃))

+ 𝜋𝜃𝜂𝑖 (𝜆
−3 (1 −

3

2
𝜃 +

1

2
𝜃2)

− (𝜆 + 𝑒
2
𝑥𝑖)

−3

(1 +
3

2
𝜃 +

1

2
𝜃2)))

− csc2 {
𝜋

2
𝜂𝑖}

(

 
 
𝜋2𝜃2𝜂𝑖

2(
𝜃

2
(𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

3

−
1

2
(𝜆−3 + (𝜆 + 𝑒

2
𝑥𝑖)

−3

− 𝜆−1 (𝜆 + 𝑒
2
𝑥𝑖)

−2

− 𝜆−2 (𝜆 + 𝑒
2
𝑥𝑖)

−1

))

)

 
 

− csc2 {
𝜋

2
𝜂𝑖}

(

  
 𝜋2

4
𝜃2𝜂𝑖

2

(

 
 
(𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)(𝜃 (𝜆−1 − (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

2

− (𝜆−2−(𝜆 + 𝑒
2
𝑥𝑖)

−2

))

)

 
 

)

  
 

+ cot {
𝜋

2
𝜂𝑖} csc

2 {
𝜋

2
𝜂𝑖} (

𝜋3

4
𝜃3𝜂𝑖

3 (𝜆−1

− (𝜆 + 𝑒
2
𝑥𝑖)

−1

)

3

) 

 

If 𝑢(𝜃, 𝜆) = 𝜃, the approximate Bayes estimates of 𝜃 SELF is 

given by 

𝜃̂𝐵𝑆 ≃ θ + 𝜌1𝜎11 + 𝜌2𝜎12

+
1

2
(𝐿111𝜎11

2 + 3𝐿112𝜎12𝜎11

+ 𝐿122(𝜎22𝜎11 + 2𝜎12
2 ) + 𝐿222𝜎22𝜎12) 

and similarly, the Bayes estimator for  𝜆 under SELF is: 

𝜆̂𝐵𝑆 ≃ 𝜆 + 𝜌1𝜎21 + 𝜌2𝜎22

+
1

2
(𝐿111𝜎11𝜎12 + 𝐿112(𝜎11𝜎22 + 2𝜎12

2 )

+ 3𝐿122𝜎12𝜎22 + 𝐿222𝜎22
2 ) 

If 𝑢(𝜃, 𝜆) = log(𝜃), the approximate Bayes estimates of 𝜃 

SLLF is given by 

𝜃̂𝐵𝐿 ≃ 𝑒𝑥𝑝 {log(𝜃) +
1

𝜃
𝜌2𝜎12 +

1

𝜃
(𝜌1 −

1

2𝜃
) 𝜎11

+
1

2𝜃
(𝐿111𝜎11

2 + 3𝐿112𝜎12𝜎11

+ 𝐿122(𝜎22𝜎11 + 2𝜎12
2 ) + 𝐿222𝜎22𝜎12)} 

Also, similarly, the Bayes estimator of  𝜆 under SLLF is: 

𝜆̂𝐵𝐿 ≃ 𝑒𝑥𝑝 {log(𝜆) +
1

𝜆
𝜌1𝜎21 +

1

𝜆
(𝜌2 −

1

2𝜆
) 𝜎22

+
1

2𝜆
(𝐿111𝜎11𝜎12 + 𝐿112(𝜎11𝜎22 + 2𝜎12

2 )

+ 3𝐿122𝜎12𝜎22 + 𝐿222𝜎22
2 )} 

Further the Bayes estimator of the reliability function under 

SELF and SLLF are given following. 

Bayes estimator for reliability function 𝑅(𝑡) 

𝑢𝑅(𝜃, 𝜆) = 𝑅(𝑡), then the corresponding derivatives are 

𝑢𝑅1 =
𝜕𝑢𝑅
𝜕𝜃

= −sin{𝜓} {𝜓 (log(𝜆) − log (𝜆 + 𝑒
2
𝑡))}  

  𝑢𝑅11 =
𝜕2𝑢𝑅
𝜕𝜃2

= −(cos{𝜓}(𝜓)

+ sin{𝜓}) {𝜓 (log(𝜆) − log (𝜆 + 𝑒
2
𝑡))

2

} 

𝑢𝑅12 =
𝜕2𝑢𝑅
𝜕𝜃𝜕𝜆

= −𝜓(𝜆−1

− (𝜆

+ 𝑒
2
𝑡)
−1

) {(cos{𝜓}(𝜃𝜓) (log(𝜆)

− log (𝜆 + 𝑒
2
𝑡)))

+ (sin{𝜓} (1 + 𝜃 log(𝜆)

+ 𝜃 log (𝜆 + 𝑒
2
𝑡)))} 

𝑢𝑅2 =
𝜕𝑢𝑅
𝜕𝜆

= −sin{𝜓} {(𝜃𝜓) (𝜆−1 − (𝜆 + 𝑒
2
𝑡)
−1

)} 

𝑢𝑅22 =
𝜕2𝑢𝑅
𝜕𝜆2

= −cos{𝜓}(𝜃𝜓)2 (𝜆−1 − (𝜆 + 𝑒
2
𝑡)
−1

)
2

− sin{𝜓} {(𝜃𝜓) (((𝜆 + 𝑒
2
𝑡)
−2

− 𝜆−2)

+ 𝜃 (𝜆−1 − (𝜆 + 𝑒
2
𝑡)
−1

)
2

)} 

where 𝜓 =
𝜋

2
𝜆𝜃 (𝜆 + 𝑒

2
𝑡)
−𝜃

 

The Bayes estimator of reliability function under SELF is: 
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𝑅̂(𝑡)𝐵𝑆 ≃ R(𝑡) +
1

2
[(𝑢11 + 2𝑢1𝜌1)𝜎11 + (𝑢21 + 2𝑢2𝜌1)𝜎21

+ (𝑢12 + 2𝑢1𝜌2)𝜎12 + (𝑢22 + 2𝑢2𝜌2)𝜎22]

+
1

2
[(𝑢1𝜎11 + 𝑢2𝜎12)(𝐿111𝜎11 + 𝐿121𝜎12

+ 𝐿211𝜎21 + 𝐿221𝜎22)

+ (𝑢1𝜎21 + 𝑢2𝜎22)(𝐿211𝜎11 + 𝐿122𝜎12
+ 𝐿212𝜎21 + 𝐿222𝜎22)] 

and, the Bayes estimator for reliability function under SLLF 

is: 

𝑅̂(𝑡)𝐵𝐿 = 𝑒𝑥𝑝 {log(𝑅(𝑡))

+
1

2
[(𝑢11 + 2𝑢1𝜌1)𝜎11

+ (𝑢21 + 2𝑢2𝜌1)𝜎21 + (𝑢12 + 2𝑢1𝜌2)𝜎12
+ (𝑢22 + 2𝑢2𝜌2)𝜎22]

+
1

2
[(𝑢1𝜎11 + 𝑢2𝜎12)(𝐿111𝜎11 + 𝐿121𝜎12

+ 𝐿211𝜎21 + 𝐿221𝜎22)

+ (𝑢1𝜎21 + 𝑢2𝜎22)(𝐿211𝜎11 + 𝐿122𝜎12

+ 𝐿212𝜎21 + 𝐿222𝜎22)]} 

IV. Simulation Study 

In this section, a Monte Carlo simulation study is carried out 

to compare the performance of the Bayesian estimates under 

squared error loss function and square logarithmic loss 

function. We take random samples of size 𝑛 = 150, 250,

300 and 500. The have been generated by the inverse 

transformation methods from CILCR distribution with 

(𝜃, 𝜆) = (0.2,1) and choice of hyper-parameters is assumed 

as 𝑎 = 2, 𝑏 = 2, 𝑐 = 2 and 𝑑 = 2. The results are replicated 

1000 times and simulation results are summarised in Table 1. 

As we can see that Bayesian estimates are performance quite 

better than their counterparts e.g. Maximum Likelihood 

estimate (MLE). All results are obtained using 

Mathematica11.  

 

 

V. Conclusion and future works 

Bayes estimators of the unknown parameters and the 

reliability function for Cosine inverse log compound Rayleigh 

distribution have been considered. From Table 1, we have 

observed that the Bayes estimates tend to converge to the true 

parametric values by increasing the sample size. Also, the 

mean squared error of the Bayes estimates decreases as the 

sample sizes increases. Due the aim of the current research, 

the Bayesian estimation of CILCR parameters only discussed 

to simulated data. Therefore, it will be worthy if Bayesian 

estimation techniques to the parameters of CILCR distribution 

is investigated case of modelling a real dataset.   
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