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Abstract_The rise in single-person households underscores the
critical need for reliable, privacy-preserving home monitoring
systems. This paper presents a comprehensive comparative
study between a Convolutional Neural Network (CNN) and a
Convolutional Recurrent Neural Network (CRNN) for
detecting domestic emergency sounds. A robust pipeline was
implemented, involving the curation of a balanced dataset of
normal and emergency sounds, extensive data augmentation,
and feature extraction using Mel-Frequency Cepstral
Coefficients (MFCCs). Counter to the theoretical expectation
that CRNNs would excel at modeling temporal audio patterns,
our experimental results demonstrate the clear superiority of the
CNN model. The CNN achieved a remarkable accuracy of 98%
and a weighted F1-score of 0.98, outperforming the CRNN
(95% accuracy). Furthermore, the CNN exhibited faster
convergence, greater training stability, and superior
generalization. These findings indicate that for short-duration,
spectrally distinct emergency sounds, the spatial feature
extraction of CNNs is not only sufficient but more effective
than explicit temporal modeling with CRNNs. The study
concludes that the CNN architecture is the optimal choice for
developing efficient and reliable audio-based emergency
detection systems for resource-constrained smart home
environments.

Keywords_ Emergency Sound Detection, Deep Learning,
Convolutional Neural Network (CNN), Convolutional
Recurrent Neural Network (CRNN), Smart Home, Audio
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I. INTRODUCTION

The global rise in single-person households (SPHs), now
representing 15-20% of households in developed nations [1],
has intensified the need for reliable home safety solutions. This
demographic shift creates particular vulnerability during
emergencies where immediate assistance may be unavailable.
The World Health Organization reports approximately 684,000
annual fatalities from falls alone, with older adults experiencing
the highest risk [2].

Traditional monitoring systems face significant limitations.
Visual surveillance raises substantial privacy concerns [3],
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while wearable devices suffer from compliance issues [4].
These challenges have accelerated interest in privacy-
preserving audio-based monitoring, leveraging the distinct
acoustic signatures produced by emergency events such as cries
for help, breaking glass, and fire alarms [5].

Deep learning approaches, particularly Convolutional Neural
Networks (CNNs) and Convolutional Recurrent Neural
Networks (CRNNs), have demonstrated remarkable success in
audio event detection [7]. However, existing commercial
systems like Amazon's Alexa Guard and Google's Nest remain
limited to narrow sound sets [8], lacking capability for broader
emergency detection including screams, falls, and gas leaks.
Furthermore, despite  CRNNSs' theoretical advantages for
temporal modeling, empirical comparisons between CNNs and
CRNNSs in home environments remain scarce [9,10].

This study addresses these gaps through systematic comparison
of CNN and CRNN architectures for home emergency sound
detection. Our main contributions include: (1) designing a
robust audio processing pipeline, (2) conducting
comprehensive architectural comparison on a balanced multi-
class dataset, and (3) evaluating practical deployment
considerations including training stability and computational
efficiency.

Il. LITERATURE REVIEW

A. Evolution of Home Monitoring Systems

When we traced the historical evolution of home safety
systems, we observed that early solutions primarily relied on
visual surveillance and wearable sensors. Through our analysis
of the literature, we found that camera-based monitoring
systems—while effective—face persistent privacy and security
challenges [3,11]. Similarly, we noted that wearable devices
such as panic buttons and fall detectors often suffer from user
compliance issues and battery dependency [4,12].

These limitations we identified in previous work directly led us
to explore audio-based monitoring as a privacy-preserving
alternative capable of detecting critical acoustic events without
recording personal images or conversations [5,13]. However,


mailto:amlellafi92@gmail.com
mailto:zahramatraw@gmail.com
mailto:3minathallahebraheemalamin@gmail.com

O

—_————

g Academy journal for Basic and Applied Sciences (AJBAS)

Volume 7, issue 2,2025

when we delved deeper into analyzing these studies, we
observed that most focused on a narrow range of sounds (e.g.,
alarms or breaking glass) and lacked robustness against
background noise and overlapping acoustic events. This limited
scope we observed in previous literature highlights a critical
research gap that our current study aims to address by
expanding detection capabilities to include diverse emergency
sounds such as screams, falls, and gas leaks.

B. Deep Learning in Audio Classification

In our comprehensive assessment of deep learning literature for
audio classification, we observed that the transition from hand-
crafted features to learned representations has radically
transformed audio event detection. We found that
Convolutional Neural Networks (CNNs) demonstrate
remarkable effectiveness in extracting local spectral patterns
from short audio segments [7,14]. In contrast, our review
revealed that Recurrent Neural Networks (RNNSs) and their
variants (LSTM, GRU) excel at modeling temporal
dependencies in longer audio sequences [15,16].

Through our cumulative analysis of the literature, we observed
the emergence of several hybrid Convolutional Recurrent
Neural Network (CRNN) models that combine the spatial
feature extraction capabilities of CNNs with the temporal
modeling strengths of RNNs [10,17]. Despite the impressive
results achieved by these studies, we found they often
overlooked computational efficiency considerations and real-
time processing constraints—aspects we consider crucial for
practical smart home applications.

Most importantly, we noticed a remarkable scarcity of direct
empirical comparisons between CNN and CRNN architectures
under identical experimental conditions. This gap in systematic
comparison made it challenging to determine which approach
is more suitable for detecting short-duration emergency sounds
in practical scenarios, which is exactly what we aimed to
address in our experimental design.

C. Current Challenges and Research Gaps

Through our critical analysis of previous studies, we were able
to identify three main research gaps that require urgent
attention:

The first gap we observed lies in the limited scope of sound
categories being studied, coupled with a noticeable shortage of
comprehensive datasets that accurately represent the acoustic
diversity of real-world home environments [8,18]. These data
scope limitations we attempted to address directly in the current
study by developing a balanced and comprehensive dataset.

The second gap we identified concerns the insufficient
comparative studies between Convolutional Neural Networks
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(CNN) and Convolutional Recurrent Neural Networks (CRNN)
models, despite their fundamental differences at both
conceptual and application levels [10,19]. This particular gap
forms the main focus of our current study, where we designed
systematic comparative experiments to address this
shortcoming.

The third gap emerges from the limited attention we observed
given to models' operational efficiency factors and their
practical applicability in edge computing environments [20].
These practical considerations we gave top priority in our
experimental design and model evaluation.

This study directly addresses these limitations by providing a
systematic comparative analysis of CNN and CRNN
architectures using a balanced, multi-class emergency sound
dataset. Moreover, it offers practical insights for optimizing
model design in real-world smart home environments, with
particular emphasis on computational efficiency, training
stability, and generalization capability.

1. METHODOLOGY

This section outlines the systematic approach adopted to design,
develop, and evaluate the deep learning-based emergency
sound detection system. The methodology is structured into five
core phases: data collection and preprocessing, feature
extraction, model development, training procedure, and
evaluation. This structured pipeline ensures reproducibility and
a fair comparative analysis between the proposed models.

A. Data Collection and Preprocessing

A composite and balanced dataset was curated from multiple
public audio repositories to ensure diversity and
representativeness.

Primary sources included UrbanSound8K, ESC-50, and
specialized Kaggle datasets for sounds like screams, falls, and
gunshots.  This was supplemented with  samples
from Freesound and Pixabay to  broaden the acoustic
variability.

e Normal Sounds

3,000 samples encompassing common domestic noises
(e.g., talking, music, appliance hum).

e Emergency Sounds

Ten critical event classes, including baby crying, breaking
glass, explosion, falling, fire, gas leak, gunshot,
scream, and alarm, with approximately 350-390 samples
per class initially.

To address the inherent class imbalance and prevent model bias,
a rigorous data augmentation strategy was
applied exclusively to the emergency sound classes. The
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augmentation techniques, implemented using the Librosa
library, included:

e Pitch Shifting

Altering the pitch by +3 semitones.

e Time Stretching

Modifying the tempo by factors between 0.7 and 1.3.

e Noise Injection

Adding low-amplitude white noise to simulate real-world
conditions.

This process increased the emergency class samples by a factor
of eight, significantly balancing the dataset as detailed
in Tablel

Table 1: Summary of dataset classes and total audio duration

Sub Category Original Sample Count Estimated Duration (Minutes)
Normal 3000 250.0
Baby crying 379 3l.6
Breaking 382 31.8
Explosion 360 30.0
Falling 320 26.7
Fire 332 27.7
Gas 350 29.2
Gunshot 340 28.3
Scream 381 31.8
Alarm 350 29.2

All audio clips were standardized to a uniform length of 5
seconds through truncation or zero-padding as illustrated in Fig
1. They were converted to a monaural channel and resampled
at a consistent rate of 22.05 kHz. Amplitude normalization was
applied to minimize variability from different recording
conditions.

BEFORE ZERO-PADDING

i

0 2 3 4 4 5 6 0 2 3 4 5 5 6
Time (seconds) Time (seconds)

AFTER ZERO-PADDING

Ampliude

5econds
Ampliude
Seconds

Fig 1: An audio waveform before and after zero-padding
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B. Feature Extraction

To transform the raw audio signals into a format suitable for
deep learning models, Mel-Frequency Cepstral Coefficients
(MFCCs) were extracted. MFCCs were selected for their
perceptual relevance, as the Mel scale approximates the human
auditory system's response, and their proven efficacy in audio
classification tasks [11, 6].

The extraction process, performed using Librosa and detailed
in Fig 2, involved:

1. Framing

Splitting the audio signal into short, overlapping frames.
2. STFT & Mel Filter bank

Applying a Short-Time Fourier Transform (STFT) and
mapping the power spectrum to the Mel scale using a filter
bank of 40 triangular filters.

3. Log-compression & DCT

Computing the logarithm of the filter bank energies and
applying a Discrete Cosine Transform (DCT) to
decorrelate the output, resulting in 40 cepstral coefficients.

Pre- .| Frame | Hamming
emphesis { | Blocking | Window

Mel-Scale Mel Frequency
Filter Bank &—{Log (. ) DCT > Cepstral Coefficients

Analxsis (MFcq)

Fig 2: MFCCs Based Feature Extraction Steps

The resulting MFCCs form a 2D spectro-temporal
representation (40 coefficients x time frames). The time axis
was standardized to 216 frames, creating a consistent input
matrix of dimensions (40, 216, 1) for all samples, which can be
treated as a single-channel image.

C. Model Architectures

Two distinct deep learning architectures were implemented and
compared using the TensorFlow-Keras framework.

1. Convolutional Neural Network (CNN)

The CNN model was designed as a baseline to exploit the
spectro-temporal patterns in the MFCC . The architecture
illustrated in Fig 3.

a. Three Convolutional Blocks
Each block contains two Conv2D layers (with 32, 64, and 128
filters, respectively, using a 3x3 kernel and ReLU activation),
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followed by Batch Normalization, MaxPooling2D (2x2), and
Dropout (rate=0.25).

b. Classification Head
The feature maps are flattened and passed through two Dense
layers (256 and 128 units, ReLU activation), each followed by
Batch Normalization and a higher Dropout rate (0.5) for
regularization. The final output layer is a Dense layer with a
softmax activation function for multi-class classification.

Fully
Connsected
Camvalution
) fool 'D'
Input POOlNE oo P Outpur
IlIniizeas o
- O."'.' I
\ AN J

"-II.r

Feature Extraction Classification

Fig 3 Architectural diagram of the CNN model for audio classification

c. Convolutional Recurrent Neural Network

(CRNN)

The CRNN model was developed to capture both spatial and
temporal dependencies. It integrates the feature extraction
power of CNNs with the sequence modeling capability of
RNNs, with its architecture illustrated in Fig 4.

a) Feature Extraction Frontend
The model uses the first two convolutional blocks from the
CNN model, producing a sequence of high-level feature maps.

b) Temporal Modeling Backend
The feature maps are reshaped into a time sequence and fed into
two Gated Recurrent Unit (GRU) layers (128 and 64 units,
respectively). The first GRU returns the full sequence, while the
second returns only the final hidden state, encoding the
temporal context of the entire audio clip.

¢) Classification Head
Identical to the CNN model, utilizing Dense layers with
Dropout and a final softmax layer.

X
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2
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Fig. 4: Architectural diagram of the hybrid CRNN model for audio
classification
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D. Training and Evaluation

To ensure comprehensive and statistically reliable
model assessment, two complementary evaluation

strategies were implemented.

1. Stratified Train-Validation—Test Split:

The dataset was initially divided using a stratified 60-20-20
split for training, validation, and testing, respectively (Fig 5).
This approach preserved class distribution across all subsets

and enabled efficient baseline evaluation of both CNN and

CRNN architectures.

Y

Training Set

60%

Y

Dataset

Validation Set

20%

Y

Test Set

20%

Fig 5: Distribution of the dataset into three non-overlapping subsets

2. K -Fold Cross-Validation Process:

To enhance statistical

robustness and minimize

potential bias resulting from a single random partition,
a stratified 5-fold cross-validation procedure was
employed (Fig 6). The dataset was divided into five
equal folds while maintaining class balance. In each
iteration, four folds were used for training and one for
validation, and the process was repeated five times.
The final performance metrics were computed as the
mean * standard deviation across all folds.

\ \ \

Fold1 Fold2 Fold3 Fold 4 FoldS

teration] SMESEM  Train |~ Train = Train | Train

Iteration2 | Train Train  Train  Train
Iteration3 | Train | Train Train ~ Train
teration 4 | Train | Train | Train Train

Full Training Data

terations | Train || Train || Train | Train "

-> Performance
for Iteration 1

Performance
= for Iteration 2

- Performance
for Iteration 3

Performance
-» for Iteration

Performance
for Iteration 5

p Average

Performance

Fig 6 : Hlustration 5-Fold Cross-Validation Process
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Both models were compiled with the Adam optimizer (initial
learning rate=0.001) and the categorical cross-entropy loss
function. They were trained with a batch size of 32 for a
maximum of 100 epochs. To ensure robust training and prevent
overfitting, key callbacks were employed:

e EarlyStopping:
Monitored validation accuracy with a patience of 10 epochs to
halt training when performance plateaued.

e ReduceLROnNPlateau
Reduced the learning rate by a factor of 0.2 if validation
accuracy did not improve for 5 epochs.

e ModelCheckpoint
Saved the best-performing model based on validation accuracy.

Model performance was evaluated on the held-out test set using
standard metrics: Accuracy, Precision, Recall, and F1-Score.

A detailed Confusion Matrix and ROC-AUC curves were
also analyzed to assess class-wise performance and overall
discriminative power.

1. RESULTS AND ANALYSIS

This section presents the experimental results of both the CNN
and CRNN models, followed by a comprehensive comparative
analysis.

A. Experimental Setup

The models were implemented using Python 3.10.0 with
TensorFlow and Keras frameworks. Feature extraction was
performed using Librosa library. Training was conducted on a
machine with 16GB RAM and Intel HD Graphics 4600.

B. Performance Evaluation Using Stratified Split
1. CNN Model Performance
The Convolutional Neural Network (CNN) model
demonstrated exceptional performance in emergency sound
classification, achieving state-of-the-art results across multiple
evaluation metrics.
a. Quantitative Performance Metrics

As detailed in Table 2, the CNN model achieved an overall
accuracy of 98% with a weighted average F1-score of 0.98,

indicating robust classification capability across all emergency
sound categories.
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Table 2: Classification Report for CNN Model

Class Precision Recall F1-Score Support
alarm 0.99 0.99 0.99 560
baby_crying 0.96 1.00 0.98 607
breaking 0.97 0.97 0.97 611
explosion 0.96 0.99 0.98 576
falling 0.99 1.00 0.99 512
fire 0.97 1.00 0.99 531
gas 0.98 0.99 0.99 560
gunshot 0.97 0.97 0.97 544
normal 0.98 0.87 0.92 600
scream 0.99 1.00 0.99 610
Accuracy 0.98 5711
Weighted Avg 0.98 0.98 0.98 5711

Notably, the model achieved perfect recall (1.00) for four
critical emergency classes: baby_crying, falling, fire, and
scream, demonstrating its exceptional capability in detecting
these crucial events without false negatives.

b.  Training Behavior and Convergence Analysis

The training dynamics of the CNN model, illustrated in Fig 7,
reveal excellent learning characteristics with rapid convergence
within 15-20 epochs. The perfect alignment between training
and validation accuracy curves indicates  superior
generalization capability, while the corresponding loss curves
show stable minimization to negligible values.

c. Confusion Matrix Analysis

The confusion matrix presented in Fig 8 provides detailed
insights into class-wise performance. The strong diagonal
concentration confirms effective classification across all
categories. Minor misclassifications occurred primarily in the
"normal” class, with 13 instances misclassified as
"baby_crying" and 17 as "breaking," suggesting acoustic
similarities between these categories that warrant further
investigation.
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Fig. 7: CNN Training/Validation Accuracy and Loss curves
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d. Discriminative Power Assessment

The Receiver Operating Characteristic (ROC) analysis,
depicted in Fig 9, demonstrates outstanding discriminative
capability with Area Under Curve (AUC) values ranging from

0.996 to 1.000 across all classes. These near-perfect AUC
scores confirm the model's superior ability to distinguish
between emergency sound categories.

CMNMN - Receiver Operating Characteristic (ROC) Curwve
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Fig 9: CNN ROC Curves with Class-wise AUC Values

2. CRNN Model Performance

The Convolutional Recurrent Neural Network (CRNN) model
showed competent performance but was consistently
outperformed by the simpler CNN architecture.

a. Quantitative Performance Metrics

As summarized in Table 3, the CRNN model achieved an
overall accuracy of 95% with a weighted average F1-score of
0.95. The CRNN model struggled most with the "normal” class,
achieving the lowest recall (0.84) and F1-score (0.87) among
all categories.
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False Positive Rate

Table 3: Comprehensive Classification Report for CRNN Model

Class Precision Recall Fl-Score Support
alarm 0.98 0.98 0.98 560
baby crying 0.94 0.97 0.95 607
breaking 0.94 0.95 0.94 611
explosion 0.96 0.97 0.96 576
falling 0.98 0.96 0.97 512
fire 0.96 0.98 0.97 531
gas 0.96 0.97 0.97 560
gunshot 0.95 0.95 0.95 544
normal 0.91 0.84 0.87 600
scream 0.98 0.99 0.98 610
Accuracy 0.95 5711
Weighted Avg 0.95 0.95 0.95 5711

b. Training Behavior and Convergence Patterns
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The training curves shown in Fig 10 indicate slower The ROC analysis in Fig 12 shows strong discriminative
convergence (30-35 epochs) compared to the CNN model. A performance with AUC values ranging from 0.989 to 1.000,
noticeable gap between training and validation curves suggests though slightly inferior to the CNN model, particularly for the
slight overfitting tendencies, and the training process exhibited "normal” category.

less stability throughout the learning phase.

c. Confusion Matrix Analysis
The confusion matrix in Fig 11 reveals more frequent
misclassifications compared to the CNN model, particularly for

the "normal” class which was often confused with emergency
categories such as "breaking," "gas," and "fire."

d. Discriminative Power Assessment
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Fig 10: CRNN Training/Validation Accuracy and Loss curves
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C. Model Performance Using 5-Fold Cross-Validation
1. CNN Model Performance

The CNN model was further evaluated using a 5-Fold Cross-
Validation protocol to ensure consistency and robustness.
It achieved a mean accuracy of 98%, with macro and weighted
F1-scores of 0.98.

The validation accuracy and loss curves illustrated in Fig 13
and 14 show smooth convergence with minimal fluctuation
across folds.

K-Fold Cross-Validation Accuracy Summary

Accuracy

= Mean Validation Accuracy
06 Standard Deviation
6
Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

0 0 » 0 0 %
Epoch

Fig13: Validation Accuracy Curves for CNN (5-Fold Cross-Validation)

K-Fold Cross-Validation Loss Summary

= Mean Validabon Loss
Standard Deviation
Fold 1
Foid 2
14 Fold 3
Fold 4
Fold §

0 0 2 X @ %
Epoch

Fig 14: Validation Loss Curves for CNN (5-Fold Cross-Validation)
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2.  CRNN Model Performance

To provide a fair comparison, the CRNN model was evaluated
under the same 5-Fold Cross-Validation protocol.
Fig 15 and 16 illustrate the validation accuracy and loss curves
across folds.

K-Fold Cross-Validation Accuracy Summary

Accuracy

= Mean Validation Accuracy
Standard Deviation

0 2 ey 60 LY
Epoch

Fig 15: Validation Accuracy Curves for CRNN (5-Fold Cross-Validation)

K-Fold Cross-Validation Loss Summary

= Mean Validation Loss
Standard Deviation

150

050

0 2 4 60 80
Epoch

Fig 16: Validation Loss Curves for CRNN (5-Fold Cross-Validation)
10
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Unlike the CNN, the CRNN curves show slower convergence
and greater fluctuation, especially during early epochs,
indicating less stable optimization and weaker generalization
capability.

These variations suggest that the CRNN struggled to maintain
consistent learning across different data partitions.

Despite this instability, the CRNN still achieved satisfactory
results, with a mean accuracy of 89.3% and a mean loss of 0.15,
as shown in Table 4.

However, its higher standard deviation (£3.5%) compared to
CNN (£0.9%0) highlights a stronger sensitivity to data variation
and reduced robustness.

Table 4. Model Performance Summary (Cross-Validation)

Model||Mean Accuracy||Mean Loss|| Standard Deviation

CNN 98.0% 0.07 +0.9%

CRNN 89.3% 0.15 +3.5%

D. Comparative Analysis and Discussion

1. Comprehensive Performance Comparison

A comparative analysis between the stratified split and cross-
validation confirms the robustness of the CNN model.

The model maintained almost identical accuracy (98.0% vs
97.8%), demonstrating consistent learning dynamics and
strong generalization capability.

Conversely, the CRNN showed a notable accuracy decline
(95.0% to 89.3%), emphasizing its sensitivity to data
segmentation.

Table 5. Performance Comparison between Evaluation Methods

Model Strsas;;‘tled Cross-Validation Difference
CNN 98.0% 97.8% -0.2%
CRNN 95.0% 89.3% -5.7%

These results reinforce that the CNN architecture not only
delivers superior accuracy but also exhibits remarkable
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consistency and reliability, making it more suitable for real-
world emergency sound detection systems.

2. Architectural and Theoretical

Insights

Implications

The cross-validation findings further strengthen the theoretical
interpretation of CNN’s superiority over CRNN.
Several factors explain this consistent advantage:

a) Acoustic Nature of Target Sounds
Most emergency sounds in our dataset (gunshots, breaking
glass, screams) are short-duration events where spectral
characteristics dominate temporal patterns. The CNN's spatial
feature extraction proves sufficient and more efficient for these
acoustic signatures.

b) Fixed-length Segmentation Impact
The 5-second audio standardization, while necessary for batch
processing, may have reduced long-term temporal
dependencies that CRNNs are designed to capture, thereby
diminishing their theoretical advantage.

c) Model Complexity and Generalization
The CRNN's additional recurrent layers increased model
complexity without commensurate performance benefits,
leading to slight overfitting tendencies and reduced
generalization capability compared to the more robust CNN
architecture.

3. Practical Deployment Considerations

Beyond theoretical performance, the CNN architecture
demonstrates several practical benefits that enhance its
suitability for real-world implementation:

a) Computational Efficiency
Faster training convergence reduces development time and
computational costs
b) Training Stability
More reliable learning dynamics facilitate reproducible results
¢) Resource Optimization
Lower complexity makes the model better suited for resource-
constrained smart home devices
Maintenance Simplicity
Easier hyperparameter tuning and monitoring

V. CONCLUSION AND FUTURE WORK
A. Conclusion

Through our hands-on experimental work comparing CNN and
CRNN models for home emergency sound detection, we
arrived at a clear and consistent finding: the CNN architecture
significantly outperforms the CRNN approach. Using both a
standard stratified split and 5-fold cross-validation, the CNN
achieved 98.0% accuracy under the first method and 97.8% *
0.9% under the second, demonstrating not only high
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performance but also remarkable stability across different data
partitions.

Contrary to widespread assumptions in the literature—and
indeed, our own initial expectations—we found that the more
complex CRNN model, despite its theoretical strength in
modeling temporal sequences, was consistently less accurate
and less stable. This outcome suggests that for short-duration,
spectrally distinct emergency sounds such as glass breaking,
screams, or gunshots, the spatial feature extraction capabilities
of CNNs are not only sufficient but actually more effective.

From a practical standpoint, our implementation experience
confirmed that the CNN is also more efficient to train and easier
to optimize, making it better suited for deployment in resource-
constrained environments such as smart homes. Based on these
results, we strongly recommend the adoption of CNN-based
models for audio-based emergency detection systems where
reliability and computational efficiency are critical.

B. Future Work

Building on the empirical evidence gathered in this study, we
identify several meaningful directions for future research:

a) Lightweight CNN Architectures:

We intend to explore streamlined versions of the CNN, such as
MobileNet or EfficientNet adaptations, to further reduce
computational overhead while retaining detection accuracy—
especially relevant for edge device deployment.

b) Context-Aware Temporal Modeling:

While the CRNN did not excel in our current task, we recognize
that certain emergency scenarios, such as prolonged cries for
help or continuous gas leaks, may still benefit from temporal
modeling. Hybrid models that selectively activate temporal
processing could be investigated.

c) In-Situ Real-World Testing:

An essential next step is moving beyond laboratory datasets to
evaluate model performance in real home environments, where
background noise, room acoustics, and overlapping sounds
present additional challenges.

d) Multimodal Sensing Integration:
We plan to enrich the audio analysis pipeline by integrating
non-acoustic sensors—such as motion, vibration, or smoke

detectors—to reduce false alarms and improve detection
confidence.
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e) Cross-Environment Generalization:

Another important avenue is assessing model adaptability
across varied acoustic settings (e.g., different household sizes,
building materials, or cultural noise backgrounds) to ensure
global applicability.

f) Few-Shot and Continual Learning:

Finally, we see value in developing incremental learning
strategies that allow the system to learn new emergency sounds
over time without full retraining—enabling personalized and
adaptable detection systems.
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