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Abstract_The rise in single-person households underscores the 

critical need for reliable, privacy-preserving home monitoring 

systems. This paper presents a comprehensive comparative 

study between a Convolutional Neural Network (CNN) and a 

Convolutional Recurrent Neural Network (CRNN) for 

detecting domestic emergency sounds. A robust pipeline was 

implemented, involving the curation of a balanced dataset of 

normal and emergency sounds, extensive data augmentation, 

and feature extraction using Mel-Frequency Cepstral 

Coefficients (MFCCs). Counter to the theoretical expectation 

that CRNNs would excel at modeling temporal audio patterns, 

our experimental results demonstrate the clear superiority of the 

CNN model. The CNN achieved a remarkable accuracy of 98% 

and a weighted F1-score of 0.98, outperforming the CRNN 

(95% accuracy). Furthermore, the CNN exhibited faster 

convergence, greater training stability, and superior 

generalization. These findings indicate that for short-duration, 

spectrally distinct emergency sounds, the spatial feature 

extraction of CNNs is not only sufficient but more effective 

than explicit temporal modeling with CRNNs. The study 

concludes that the CNN architecture is the optimal choice for 

developing efficient and reliable audio-based emergency 

detection systems for resource-constrained smart home 

environments. 

Keywords_ Emergency Sound Detection, Deep Learning, 

Convolutional Neural Network (CNN), Convolutional 

Recurrent Neural Network (CRNN), Smart Home, Audio 
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I.     INTRODUCTION 

The global rise in single-person households (SPHs), now 

representing 15-20% of households in developed nations [1], 

has intensified the need for reliable home safety solutions. This 

demographic shift creates particular vulnerability during 

emergencies where immediate assistance may be unavailable. 

The World Health Organization reports approximately 684,000 

annual fatalities from falls alone, with older adults experiencing 

the highest risk [2]. 

Traditional monitoring systems face significant limitations. 

Visual surveillance raises substantial privacy concerns [3], 

while wearable devices suffer from compliance issues [4]. 

These challenges have accelerated interest in privacy-

preserving audio-based monitoring, leveraging the distinct 

acoustic signatures produced by emergency events such as cries 

for help, breaking glass, and fire alarms [5]. 

Deep learning approaches, particularly Convolutional Neural 

Networks (CNNs) and Convolutional Recurrent Neural 

Networks (CRNNs), have demonstrated remarkable success in 

audio event detection [7]. However, existing commercial 

systems like Amazon's Alexa Guard and Google's Nest remain 

limited to narrow sound sets [8], lacking capability for broader 

emergency detection including screams, falls, and gas leaks. 

Furthermore, despite CRNNs' theoretical advantages for 

temporal modeling, empirical comparisons between CNNs and 

CRNNs in home environments remain scarce [9,10]. 

This study addresses these gaps through systematic comparison 

of CNN and CRNN architectures for home emergency sound 

detection. Our main contributions include: (1) designing a 

robust audio processing pipeline, (2) conducting 

comprehensive architectural comparison on a balanced multi-

class dataset, and (3) evaluating practical deployment 

considerations including training stability and computational 

efficiency. 

II.     LITERATURE REVIEW 

A. Evolution of Home Monitoring Systems 

When we traced the historical evolution of home safety 

systems, we observed that early solutions primarily relied on 

visual surveillance and wearable sensors. Through our analysis 

of the literature, we found that camera-based monitoring 

systems—while effective—face persistent privacy and security 

challenges [3,11]. Similarly, we noted that wearable devices 

such as panic buttons and fall detectors often suffer from user 

compliance issues and battery dependency [4,12]. 

These limitations we identified in previous work directly led us 

to explore audio-based monitoring as a privacy-preserving 

alternative capable of detecting critical acoustic events without 

recording personal images or conversations [5,13]. However, 
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 when we delved deeper into analyzing these studies, we 

observed that most focused on a narrow range of sounds (e.g., 

alarms or breaking glass) and lacked robustness against 

background noise and overlapping acoustic events. This limited 

scope we observed in previous literature highlights a critical 

research gap that our current study aims to address by 

expanding detection capabilities to include diverse emergency 

sounds such as screams, falls, and gas leaks. 

B. Deep Learning in Audio Classification 

In our comprehensive assessment of deep learning literature for 

audio classification, we observed that the transition from hand-

crafted features to learned representations has radically 

transformed audio event detection. We found that 

Convolutional Neural Networks (CNNs) demonstrate 

remarkable effectiveness in extracting local spectral patterns 

from short audio segments [7,14]. In contrast, our review 

revealed that Recurrent Neural Networks (RNNs) and their 

variants (LSTM, GRU) excel at modeling temporal 

dependencies in longer audio sequences [15,16]. 

Through our cumulative analysis of the literature, we observed 

the emergence of several hybrid Convolutional Recurrent 

Neural Network (CRNN) models that combine the spatial 

feature extraction capabilities of CNNs with the temporal 

modeling strengths of RNNs [10,17]. Despite the impressive 

results achieved by these studies, we found they often 

overlooked computational efficiency considerations and real-

time processing constraints—aspects we consider crucial for 

practical smart home applications. 

Most importantly, we noticed a remarkable scarcity of direct 

empirical comparisons between CNN and CRNN architectures 

under identical experimental conditions. This gap in systematic 

comparison made it challenging to determine which approach 

is more suitable for detecting short-duration emergency sounds 

in practical scenarios, which is exactly what we aimed to 

address in our experimental design. 

C. Current Challenges and Research Gaps 

Through our critical analysis of previous studies, we were able 

to identify three main research gaps that require urgent 

attention: 

The first gap we observed lies in the limited scope of sound 

categories being studied, coupled with a noticeable shortage of 

comprehensive datasets that accurately represent the acoustic 

diversity of real-world home environments [8,18]. These data 

scope limitations we attempted to address directly in the current 

study by developing a balanced and comprehensive dataset. 

The second gap we identified concerns the insufficient 

comparative studies between Convolutional Neural Networks 

(CNN) and Convolutional Recurrent Neural Networks (CRNN) 

models, despite their fundamental differences at both 

conceptual and application levels [10,19]. This particular gap 

forms the main focus of our current study, where we designed 

systematic comparative experiments to address this 

shortcoming. 

The third gap emerges from the limited attention we observed 

given to models' operational efficiency factors and their 

practical applicability in edge computing environments [20]. 

These practical considerations we gave top priority in our 

experimental design and model evaluation. 

This study directly addresses these limitations by providing a 

systematic comparative analysis of CNN and CRNN 

architectures using a balanced, multi-class emergency sound 

dataset. Moreover, it offers practical insights for optimizing 

model design in real-world smart home environments, with 

particular emphasis on computational efficiency, training 

stability, and generalization capability. 

II.     METHODOLOGY 

This section outlines the systematic approach adopted to design, 

develop, and evaluate the deep learning-based emergency 

sound detection system. The methodology is structured into five 

core phases: data collection and preprocessing, feature 

extraction, model development, training procedure, and 

evaluation. This structured pipeline ensures reproducibility and 

a fair comparative analysis between the proposed models. 

A.  Data Collection and Preprocessing 

A composite and balanced dataset was curated from multiple 

public audio repositories to ensure diversity and 

representativeness. 

Primary sources  included UrbanSound8K, ESC-50, and 

specialized Kaggle datasets for sounds like screams, falls, and 

gunshots. This was supplemented with samples 

from Freesound and Pixabay to broaden the acoustic 

variability. 

• Normal Sounds 

 3,000 samples encompassing common domestic noises 

(e.g., talking, music, appliance hum). 

• Emergency Sounds 

Ten critical event classes, including baby crying, breaking 

glass, explosion, falling, fire, gas leak, gunshot, 

scream, and alarm, with approximately 350-390 samples 

per class initially. 

To address the inherent class imbalance and prevent model bias, 

a rigorous data augmentation strategy was 

applied exclusively to the emergency sound classes. The 
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 augmentation techniques, implemented using the Librosa 

library, included: 

• Pitch Shifting 

Altering the pitch by ±3 semitones. 

• Time Stretching 

Modifying the tempo by factors between 0.7 and 1.3. 

• Noise Injection 

Adding low-amplitude white noise to simulate real-world 

conditions. 

This process increased the emergency class samples by a factor 

of eight, significantly balancing the dataset as detailed 

in   Table 1 

Table  1: Summary of dataset classes and total audio duration 

 

All audio clips were standardized to a uniform length of 5 

seconds through truncation or zero-padding as illustrated in Fig 

1. They were converted to a monaural channel and resampled 

at a consistent rate of 22.05 kHz. Amplitude normalization was 

applied to minimize variability from different recording 

conditions. 

 

Fig 1: An audio waveform before and after zero-padding 

B.  Feature Extraction 

To transform the raw audio signals into a format suitable for 

deep learning models, Mel-Frequency Cepstral Coefficients 

(MFCCs) were extracted. MFCCs were selected for their 

perceptual relevance, as the Mel scale approximates the human 

auditory system's response, and their proven efficacy in audio 

classification tasks [11, 6]. 

The extraction process, performed using Librosa and detailed 

in Fig 2, involved: 

1. Framing 

Splitting the audio signal into short, overlapping frames. 

2. STFT & Mel Filter bank 

Applying a Short-Time Fourier Transform (STFT) and 

mapping the power spectrum to the Mel scale using a filter  

bank of 40 triangular filters. 

3. Log-compression & DCT 

 Computing the logarithm of the filter  bank energies and 

applying a Discrete Cosine Transform (DCT) to 

decorrelate the output, resulting in 40 cepstral coefficients. 

 

 

Fig 2: MFCCs Based Feature Extraction Steps 

 

The resulting MFCCs form a 2D spectro-temporal 

representation (40 coefficients × time frames). The time axis 

was standardized to 216 frames, creating a consistent input 

matrix of dimensions (40, 216, 1) for all samples, which can be 

treated as a single-channel image. 

C.  Model Architectures 

Two distinct deep learning architectures were implemented and 

compared using the TensorFlow-Keras framework. 

1.  Convolutional Neural Network (CNN) 

The CNN model was designed as a baseline to exploit the 

spectro-temporal patterns in the MFCC . The architecture 

illustrated in Fig 3. 

a. Three Convolutional Blocks 

Each block contains two Conv2D layers (with 32, 64, and 128 

filters, respectively, using a 3×3 kernel and ReLU activation), 
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 followed by Batch Normalization, MaxPooling2D (2×2), and 

Dropout (rate=0.25). 

b. Classification Head 

The feature maps are flattened and passed through two Dense 

layers (256 and 128 units, ReLU activation), each followed by 

Batch Normalization and a higher Dropout rate (0.5) for 

regularization. The final output layer is a Dense layer with a  

softmax activation function for multi-class classification. 

 

 

Fig 3 Architectural diagram of the CNN model for audio classification 

c.  Convolutional Recurrent Neural Network 

(CRNN) 

The CRNN model was developed to capture both spatial and 

temporal dependencies. It integrates the feature extraction 

power of CNNs with the sequence modeling capability of 

RNNs, with its architecture illustrated in Fig 4. 

a) Feature Extraction Frontend 

The model uses the first two convolutional blocks from the 

CNN model, producing a sequence of high-level feature maps. 

b) Temporal Modeling Backend 

The feature maps are reshaped into a time sequence and fed into 

two Gated Recurrent Unit (GRU) layers (128 and 64 units, 

respectively). The first GRU returns the full sequence, while the 

second returns only the final hidden state, encoding the 

temporal context of the entire audio clip. 

c) Classification Head 

 Identical to the CNN model, utilizing Dense layers with 

Dropout and a final softmax layer. 

 

 

Fig. 4: Architectural diagram of the hybrid CRNN model for audio 

classification 

D.  Training and Evaluation 

To ensure comprehensive and statistically reliable 

model assessment, two complementary evaluation 

strategies were implemented . 

1. Stratified Train–Validation–Test Split: 

The dataset was initially divided using a stratified 60–20–20 

split for training, validation, and testing, respectively (Fig 5). 

This approach preserved class distribution across all subsets 

and enabled efficient baseline evaluation of both CNN and 

CRNN architectures.  

 

Fig 5: Distribution of the dataset into three non-overlapping subsets 

2. K -Fold Cross-Validation Process: 

To enhance statistical robustness and minimize  

potential bias resulting from a single random partition, 

a stratified 5-fold cross-validation procedure was 

employed (Fig 6). The dataset was divided into five 

equal folds while maintaining class balance. In each 

iteration, four folds were used for training and one for 

validation, and the process was repeated five times. 

The final performance metrics were computed as the 

mean ± standard deviation across all folds. 

 

Fig  6  : Illustration 5-Fold Cross-Validation Process 
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 Both models were compiled with  the Adam optimizer (initial 

learning rate=0.001) and the categorical cross-entropy loss 

function. They were trained with a batch size of 32 for a 

maximum of 100 epochs. To ensure robust training and prevent 

overfitting, key callbacks were employed: 

• EarlyStopping:  

Monitored validation accuracy with a patience of 10 epochs to 

halt training when performance plateaued. 

• ReduceLROnPlateau 

 Reduced the learning rate by a factor of 0.2 if validation 

accuracy did not improve for 5 epochs. 

• ModelCheckpoint 

Saved the best-performing model based on validation accuracy. 

Model performance was evaluated on the held-out test set using 

standard metrics: Accuracy, Precision, Recall, and F1-Score. 

 A detailed Confusion Matrix and ROC-AUC curves were 

also analyzed to assess class-wise performance and overall 

discriminative power. 

 

III. RESULTS AND ANALYSIS 

This section presents the experimental results of both the CNN 

and CRNN models, followed by a comprehensive comparative 

analysis. 

A.  Experimental Setup 

The models were implemented using Python 3.10.0 with 

TensorFlow and Keras frameworks. Feature extraction was 

performed using Librosa library. Training was conducted on a 

machine with 16GB RAM and Intel HD Graphics 4600. 

B. Performance Evaluation Using Stratified Split 

 

1. CNN Model Performance 

The Convolutional Neural Network (CNN) model 

demonstrated exceptional performance in emergency sound 

classification, achieving state-of-the-art results across multiple 

evaluation metrics. 

a.   Quantitative Performance Metrics 

As detailed in Table 2, the CNN model achieved an overall 

accuracy of 98% with a weighted average F1-score of 0.98, 

indicating robust classification capability across all emergency 

sound categories. 

 

Table 2: Classification Report for CNN Model 

 

Notably, the model achieved perfect recall (1.00) for four 

critical emergency classes: baby_crying, falling, fire, and 

scream, demonstrating its exceptional capability in detecting 

these crucial events without false negatives. 

b.   Training Behavior and Convergence Analysis 

The training dynamics of the CNN model, illustrated in Fig 7, 

reveal excellent learning characteristics with rapid convergence 

within 15-20 epochs. The perfect alignment between training 

and validation accuracy curves indicates superior 

generalization capability, while the corresponding loss curves 

show stable minimization to negligible values. 

c. Confusion Matrix Analysis 

The confusion matrix presented in Fig 8 provides detailed 

insights into class-wise performance. The strong diagonal 

concentration confirms effective classification across all 

categories. Minor misclassifications occurred primarily in the 

"normal" class, with 13 instances misclassified as 

"baby_crying" and 17 as "breaking," suggesting acoustic 

similarities between these categories that warrant further 

investigation. 
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Fig. 7: CNN Training/Validation Accuracy and Loss curves 

Fig 8: CNN Confusion Matrix 
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 d.  Discriminative Power Assessment 

The Receiver Operating Characteristic (ROC) analysis, 

depicted in Fig 9, demonstrates outstanding discriminative 

capability with Area Under Curve (AUC) values ranging from 

0.996 to 1.000 across all classes. These near-perfect AUC 

scores confirm the model's superior ability to distinguish 

between emergency sound categories. 

Fig 9: CNN ROC Curves with Class-wise AUC Values 

2. CRNN Model Performance  

The Convolutional Recurrent Neural Network (CRNN) model 

showed competent performance but was consistently 

outperformed by the simpler CNN architecture. 

a.  Quantitative Performance Metrics 

As summarized in Table 3, the CRNN model achieved an 

overall accuracy of 95% with a weighted average F1-score of 

0.95.  The CRNN model struggled most with the "normal" class, 

achieving the lowest recall (0.84) and F1-score (0.87) among 

all categories. 

 

 

 

 

 

 

 

Table 3: Comprehensive Classification Report for CRNN Model 

 

b. Training Behavior and Convergence Patterns 
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 The training curves shown in Fig 10 indicate slower 

convergence (30-35 epochs) compared to the CNN model. A 

noticeable gap between training and validation curves suggests 

slight overfitting tendencies, and the training process exhibited 

less stability throughout the learning phase. 

c. Confusion Matrix Analysis 

The confusion matrix in Fig 11 reveals more frequent 

misclassifications compared to the CNN model, particularly for 

the "normal" class which was often confused with emergency 

categories such as "breaking," "gas," and "fire." 

 

d. Discriminative Power Assessment 

The ROC analysis in Fig 12 shows strong discriminative 

performance with AUC values ranging from 0.989 to 1.000, 

though slightly inferior to the CNN model, particularly for the 

"normal" category. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 10: CRNN Training/Validation Accuracy and Loss curves 
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Fig 11: CRNN Confusion Matrix Visualization 

 

Fig 12: CRNN ROC Curves with Class-wise AUC Values 
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 C. Model Performance Using 5-Fold Cross-Validation 

1. CNN Model Performance 

The CNN model was further evaluated using a 5-Fold Cross-

Validation protocol to ensure consistency and robustness. 

It achieved a mean accuracy of 98%, with macro and weighted 

F1-scores of 0.98. 

The validation accuracy and loss curves illustrated in Fig 13 

and 14 show smooth convergence with minimal fluctuation 

across folds. 

 

Fig13: Validation Accuracy Curves for CNN (5-Fold Cross-Validation) 

 

Fig 14: Validation Loss Curves for CNN (5-Fold Cross-Validation) 

2. CRNN Model Performance 

To provide a fair comparison, the CRNN model was evaluated 

under the same 5-Fold Cross-Validation protocol. 

Fig 15 and 16 illustrate the validation accuracy and loss curves 

across folds. 

 

Fig 15: Validation Accuracy Curves for CRNN (5-Fold Cross-Validation) 

Fig 16: Validation Loss Curves for CRNN (5-Fold Cross-Validation) 
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 Unlike the CNN, the CRNN curves show slower convergence 

and greater fluctuation, especially during early epochs, 

indicating less stable optimization and weaker generalization 

capability. 

These variations suggest that the CRNN struggled to maintain 

consistent learning across different data partitions. 

Despite this instability, the CRNN still achieved satisfactory 

results, with a mean accuracy of 89.3% and a mean loss of 0.15, 

as shown in Table 4. 

However, its higher standard deviation (±3.5%) compared to 

CNN (±0.9%) highlights a stronger sensitivity to data variation 

and reduced robustness. 

Table 4. Model Performance Summary (Cross-Validation) 

Model Mean Accuracy Mean Loss Standard Deviation 

CNN 98.0% 0.07 ± 0.9% 

CRNN 89.3% 0.15 ± 3.5% 

D. Comparative Analysis and Discussion 

 

1. Comprehensive Performance Comparison 

A comparative analysis between the stratified split and cross-

validation confirms the robustness of the CNN model. 

The model maintained almost identical accuracy (98.0% vs 

97.8%), demonstrating consistent learning dynamics and 

strong generalization capability. 

Conversely, the CRNN showed a notable accuracy decline 

(95.0% to 89.3%), emphasizing its sensitivity to data 

segmentation. 

Table 5. Performance Comparison between Evaluation Methods 

Model 
Stratified 

Split 
Cross-Validation Difference 

CNN 98.0% 97.8% −0.2% 

CRNN 95.0% 89.3% −5.7% 

These results reinforce that the CNN architecture not only 

delivers superior accuracy but also exhibits remarkable 

consistency and reliability, making it more suitable for real-

world emergency sound detection systems. 

2. Architectural Implications and Theoretical 

Insights 

The cross-validation findings further strengthen the theoretical 

interpretation of CNN’s superiority over CRNN. 

Several factors explain this consistent advantage: 

a) Acoustic Nature of Target Sounds 

 Most emergency sounds in our dataset (gunshots, breaking 

glass, screams) are short-duration events where spectral 

characteristics dominate temporal patterns. The CNN's spatial 

feature extraction proves sufficient and more efficient for these 

acoustic signatures. 

b) Fixed-length Segmentation Impact 

The 5-second audio standardization, while necessary for batch 

processing, may have reduced long-term temporal 

dependencies that CRNNs are designed to capture, thereby 

diminishing their theoretical advantage. 

c) Model Complexity and Generalization 

The CRNN's additional recurrent layers increased model 

complexity without commensurate performance benefits, 

leading to slight overfitting tendencies and reduced 

generalization capability compared to the more robust CNN 

architecture. 

3. Practical Deployment Considerations 

Beyond theoretical performance, the CNN architecture 

demonstrates several practical benefits that enhance its 

suitability for real-world implementation: 

a) Computational Efficiency 

 Faster training convergence reduces development time and 

computational costs 

b) Training Stability 

More reliable learning dynamics facilitate reproducible results 

c) Resource Optimization 

Lower complexity makes the model better suited for resource-

constrained smart home devices 

Maintenance Simplicity 

Easier hyperparameter tuning and monitoring 

 

IV. CONCLUSION AND FUTURE WORK 

A.  Conclusion 

Through our hands-on experimental work comparing CNN and 

CRNN models for home emergency sound detection, we 

arrived at a clear and consistent finding: the CNN architecture 

significantly outperforms the CRNN approach. Using both a 

standard stratified split and 5-fold cross-validation, the CNN 

achieved 98.0% accuracy under the first method and 97.8% ± 

0.9% under the second, demonstrating not only high 
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 performance but also remarkable stability across different data 

partitions. 

Contrary to widespread assumptions in the literature—and 

indeed, our own initial expectations—we found that the more 

complex CRNN model, despite its theoretical strength in 

modeling temporal sequences, was consistently less accurate 

and less stable. This outcome suggests that for short-duration, 

spectrally distinct emergency sounds such as glass breaking, 

screams, or gunshots, the spatial feature extraction capabilities 

of CNNs are not only sufficient but actually more effective. 

From a practical standpoint, our implementation experience 

confirmed that the CNN is also more efficient to train and easier 

to optimize, making it better suited for deployment in resource-

constrained environments such as smart homes. Based on these 

results, we strongly recommend the adoption of CNN-based 

models for audio-based emergency detection systems where 

reliability and computational efficiency are critical. 

 

B.  Future Work 

Building on the empirical evidence gathered in this study, we 

identify several meaningful directions for future research: 

a) Lightweight CNN Architectures: 

We intend to explore streamlined versions of the CNN, such as 

MobileNet or EfficientNet adaptations, to further reduce 

computational overhead while retaining detection accuracy—

especially relevant for edge device deployment. 

b) Context-Aware Temporal Modeling: 

While the CRNN did not excel in our current task, we recognize 

that certain emergency scenarios, such as prolonged cries for 

help or continuous gas leaks, may still benefit from temporal 

modeling. Hybrid models that selectively activate temporal 

processing could be investigated. 

c) In-Situ Real-World Testing: 

An essential next step is moving beyond laboratory datasets to 

evaluate model performance in real home environments, where 

background noise, room acoustics, and overlapping sounds 

present additional challenges. 

d) Multimodal Sensing Integration: 

We plan to enrich the audio analysis pipeline by integrating 

non-acoustic sensors—such as motion, vibration, or smoke 

detectors—to reduce false alarms and improve detection 

confidence. 

 

e) Cross-Environment Generalization: 

Another important avenue is assessing model adaptability 

across varied acoustic settings (e.g., different household sizes, 

building materials, or cultural noise backgrounds) to ensure 

global applicability. 

f) Few-Shot and Continual Learning: 

Finally, we see value in developing incremental learning 

strategies that allow the system to learn new emergency sounds 

over time without full retraining—enabling personalized and 

adaptable detection systems. 
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