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Abstract— The aim of this paper is to represent a bitopological representation (𝑉, 𝜏𝑆1

, 𝜏𝑆2
) of divisor graph 𝐺 =

(𝑉, 𝐸)  defining in a finite commutative rings in which every vertex 𝑣 is adjacent with a vertex 𝑢 if and only if 

𝑔. 𝑐. 𝑑(𝑢, 𝑣) = 1. Then some properties of this bitopological space were investigated.  
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1. Introduction 

 

In (2013), S. Amiri, A. Jafarzadeh, H. 

Khatibzadeh present a definition of an 

Alexandroff topology and in (2018), K. Abdu, 

A. Kilicman use this topolology and defined 

another one to give a bitopological spaces on 

undirected graphs. The reader can refer to [5,7]. 

This paper introduces and studies a Topological 

Spaces Associated with Finite Divisor Graphs 

𝐺 = (𝑉, 𝐸). Specifically, for a finite 

commutative ring 𝑅 = (ℤ𝑛, +𝑛 ,∙𝑛), where ℤ𝑛 =
{0,1,2,3, … , 𝑛 − 1} and (+𝑛), (∙𝑛) are addition 

and multiplication module the integer 𝑛, at it 

has been defined in [3]. We consider the graph 

𝐺 = (𝑉, 𝐸) where vertices are ring elements 

and two vertices 𝑢 and 𝑣 are adjacent if and only 

if their greatest common divisor is 1 without 

accounting the loop at the vertex 1, Because we 

are taking into consideration 𝑔. 𝑐. 𝑑(𝑢, 𝑣) = 1 if 

and only if 𝑢 ≠ 𝑣. On such a graph, we define 

two topologies 𝜏𝑆1
and 𝜏𝑆2

via subbases 𝑆1 and 𝑆2 

derived from adjacency sets, leading to a 

bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

).  

Our main objective is to explore the topological 

properties of these structures, including 

separation axioms, connectedness, regularity, 

and the behavior of open and closed sets. We 

also examine how graph-theoretic properties, 

such as vertex degree and adjacency, influence 

the topological features of the associated 

spaces. 

The paper is organized as follows: Section 2 

provides necessary preliminaries from graph 

theory and topology. Sections 3 and 4 present 

our main results on the topological properties of 

𝜏𝑆1
 and 𝜏𝑆2

, respectively. Section 5 is devoted 

to bitopological properties, and the final section 

offers concluding remarks and directions for 

future research. 

 

 

 

2. Preliminaries 

 

In this section, we recall basic 

definitions and notations from graph theory and 

topology that will be used throughout the paper. 

Standard references include [1,2,4,6, 8]. 

 

2.1 Preliminaries on graphs 

A simple graph 𝐺 = (𝑉, 𝐸) consists of 

a vertex set 𝑉 and an edge set 𝐸 ⊆ 𝑉 × 𝑉. Two 

vertices 𝑥 and 𝑦 are adjacent if 𝑥𝑦 ∈ 𝐸. The set 

of neighbors of a vertex 𝑣 is denoted by 𝐴𝑣. The 

degree of 𝑣, denoted 𝑑𝑒𝑔(𝑣), is the number of 

neighbors of 𝑣. 

A divisor graph over a finite commutative ring 

ℤ𝑛 is defined as 𝐺 = (𝑉, 𝐸) where 𝑉 = ℤ𝑛  and 

𝑢𝑣 ∈ 𝐸 if and only if  𝑔. 𝑐. 𝑑(𝑢, 𝑣) = 1 for all 

𝑢 ≠ 𝑣. 

 

 

2.2 Preliminaries on topology 

 

In this subsection, we define the 

topologies 𝜏𝑆1
which has been interfused in [4] 

and give a new definition of an another 

topology 𝜏𝑆2
on the same vertex set 𝑉 of a 

divisor graph, leading to a bitopological space 

that captures both algebraic and combinatorial 

properties of the underlying ring. For more 

information, see [6,8]. 

 

Definition 2.2.1. [6] A topology on a set 𝑋 is a 

collection 𝜏 of subsets of 𝑋 having the following 

properties: 
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(1) ∅ and 𝑋 are in 𝜏 . 

(2) The union of the elements of any 

subcollection of 𝜏 is in 𝜏. 

(3) The intersection of the elements of any finite 

subcollection of 𝜏 is in 𝜏. 

A set 𝑋 for which a topology 𝜏 has been 

specified is called a topological space. 

If 𝑋 is a topological space with 

topology 𝜏, we say that a subset 𝑈 of 𝑋 is an 

open set of 𝑋 if 𝑈 belongs to the collection 𝜏. 

Using this terminology, one can say that a 

topological space is a set 𝑋 together with a 

collection of subsets of 𝑋, called open sets, such 

that ∅ and 𝑋 are both open, and such that 

arbitrary unions and finite intersections of open 

sets are open. 

 

Definition 2.2.2. [6] If 𝑋 is a set, a basis for a 

topology on 𝑋 is a collection ℬ of subsets of 𝑋 

(called basis elements) such that 

(1) For each 𝑥 ∈  𝑋, there is at least one basis 

element 𝐵 containing 𝑥. 

(2) If 𝑥 belongs to the intersection of two basis 

elements 𝐵1 and 𝐵2, then there is a base element 

𝐵3 containing 𝑥 such that 𝐵3 ⊂ 𝐵1 ∩ 𝐵2. 

 

Definition 2.2.3. [6] A subbase 𝑆 for a topology 

on 𝑋 is a collection of subsets of 𝑋 whose union 

equals 𝑋. The topology generated by the 

subbase 𝑆 is defined to be the collection 𝜏 of all 

unions of finite intersections of elements of 𝑆. 

 

Definition 2.2.4. [4] The topology 𝜏𝑆1
 is 

defined as follows: 

Let 𝐺 =  (𝑉, 𝐸) is a simple undirected finite 

graph and with no isolated vertices, that is for 

each 𝑢 ∈ 𝑉 , there exist 𝑣 ∈ 𝑉 such that the edge 

{𝑢, 𝑣} ∈ 𝐸, this means 𝑥 and 𝑦 are adjacent 

(𝑢 ∼ 𝑣). Let 𝐴𝑣 = {𝑢 ∈ 𝑉 ;  {𝑢, 𝑣} ∈ 𝐸} be the 

neighborhood of 𝑣. The topology 𝜏𝑆1
 on the set 

𝑉 is the topology which has the collection 𝑆1 as 

a subbase, where 𝑆1 = {𝐴𝑣 ∶  𝑣 ∈ 𝑉 }. We say 

the pair (𝑉, 𝜏𝑆1
) is a graphic topological space 

or (𝑉, 𝜏𝑆1
) is topological graph. 

 

Example 2.2.5.  

Let 𝐺 = (ℤ6, 𝐸), where 𝐸 = {𝑢𝑣 ∶
𝑔. 𝑐. 𝑑(𝑢, 𝑣) = 1 , 𝑢 ≠ 𝑣}, as show in Figure (1) 

below. Then 

𝑆1 = {𝐴0 = {1}, 𝐴2 = 𝐴4 = {1,3,5}, 𝐴5 =
{1,2,3,4}, 𝐴3 = {1,2,4,5}, 𝐴1 = {0,2,3,4,5}} 
and 

ℬ𝑆1
= {∅, {1}, {3}, {5}, {1,3}, {1,5}, {2,4}, {3,5}, 

{1,2,4}, {1,3,5}, {2,3,4}, {2,4,5}, {1,2,3,4}, {1,2,4,5}, 
{0,2,3,4,5}}.  

Hence 

𝜏𝑆1
= {∅, ℤ6, {1}, {3}, {5}, {1,3}, {1,5}, {3,5}, 

{1,3,5}, {2,4}, {1,2,4}, {2,3,4}, {2,4,5}, 

     {1,2,3,4}, {1,2,4,5}, {2,3,4,5}, {1,2,3,4,5}, 
        {0,2,3,4,5}}. 
 

 

  
  

 
 

  
 
 
 

 
 

 

 

 

 

 

 

 

 

𝑭𝒊𝒈𝒖𝒓𝒆 (𝟏)  
 

Now If we suppose that 𝑂𝑣 = 𝐴𝑣⋃{𝑣}. 

Then we can investigate an another topology 𝜏𝑆2
 

on the set of vertices 𝑉, which defined by  the 

𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑂𝑣𝑖
 as following: 

 

Definition 2.2.6.   

A topological space (𝑉, 𝜏𝑆2
) where 𝑉 = ℤ𝑛 and 

𝜏𝑆2
 is a topology defined by the subbase 𝑆2 =

{𝑂𝑣 ∶ 𝑣 ∈ 𝑉}. 

 

Example 2.2.7.  

Let 𝐺 = (ℤ6, 𝐸), The same graph which is 

defined in Figure (1). Then 

𝑆2 = {𝑂0 = {0,1}, 𝑂1 = ℤ6, 𝑂2 = {1,2,3,5}, 𝑂3 =
𝑂5 = {1,2,3,4,5}, 𝑂4 = {1,3,4,5}} and 

ℬ𝑆2
= {∅, ℤ6, {1}, {0,1}, {1,3,5}, {1,2,3,5}, {1,3,4,5}, {1,2,3,4,5}}.  

Hence 

 𝜏𝑆2
= {∅, {ℤ6, {1}, {0,1}, {1,3,5}, {0,1,3,5}, {1,2,3,5}, {1,3,4,5}, 

           {0,1,2,3,5}, {0,1,3,4,5}, {1,2,3,4,5}}. 

 

Definition 2.2.8. 

A bitopological space is a triple (𝑉, 𝜏𝑆1
, 𝜏𝑆2

)  

where 𝜏𝑆1
 and 𝜏𝑆2

are topologies on 𝑉 = ℤ𝑛. 

 

3. Main Results 

 

In this section, investigate the properties of 

the topological spaces (𝑉, 𝜏𝑆1
) and (𝑉, 𝜏𝑆2

), 

where 𝑉 = ℤ𝑛 and 𝑛 ≥ 4. Moreover we study 

some of properties of the bitopological space 

(𝑉, 𝜏𝑆1
, 𝜏𝑆2

). 

 

3.1 The topological space (𝑽, 𝝉𝑺𝟏
) 

 

1 

2 
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In this section, we investigate properties of 

the topological space (𝑉, 𝜏𝑆1
), where 𝑉 = ℤ𝑛 

and 𝑛 ≥ 4. 

 

Proposition 3.1.1 Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆1
), 

the set {0} is closed but not open.  

 

Proof. To prove that {0} is closed set, it is 

enough to prove that ({0})𝑐 can be written as an 

arbitrary union of members of 𝑆𝐺 . But for any 

1 ≠ 𝑣 ∈ 𝑉 we have 0 ∉ 𝐴𝑣 that means 0 ∉
⋃ 𝐴𝑣𝑣≠1 = 𝑉 ∖ {0} ∈ 𝜏, so {0} is closed set. On 

the other hand, the only open set containing the 

vertex 0 in 𝑆𝐺  is 𝐴1 = 𝑉 ∖ {1} which means that 

{0} can-not be obtained from any finite 

intersection of elements in 𝑆𝐺 . □ 

 

Proposition 3.1.2. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆1
), 

the set {1} is clopen.  

 

Proof. Since 𝑔. 𝑐. 𝑑(0, 𝑣) = 1 if and only if 𝑣 =
1, then 𝐴0 = {1} is an open set. On the other 

hand, 𝑔. 𝑐. 𝑑(1, 𝑣) = 1 for all 𝑣 ∈ 𝑉 which 

means  𝐴1 = 𝑉 ∖ {1} ∈ 𝜏, so the set {1} is 

closed. □ 

 

Remark 3.1.3. Proposition 3.1.2 shows that the 

only vertex in the divisor graph 𝐺 = (𝑉, 𝐸) with 

degree 𝑛 − 1 is the vertex 1, as established in 

its proof. 

 

Proposition 3.1.4. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆1
), if 

𝑑𝑒𝑔(𝑣) = 𝑛 − 2, the set 𝐴 = {𝑣} is an open. 

Then for any 𝑣 ∈ 𝑉, if 𝑑𝑒𝑔(𝑣) = 𝑛 − 2, then 

the singleton {𝑣} is open in (𝑉, 𝜏𝑆1
). 

 

Proof. A vertex 𝑣 has degree n − 2 if and only 

if it is adjacent to all vertices  𝑤𝑖 ∈ 𝑉 ∖ {0, 𝑣} if 

and only if 𝑔. 𝑐. 𝑑(𝑣, 𝑤𝑖) = 1, so 𝑣 ∈ 𝐴𝑤𝑖
 for all 

𝑖 which means 𝑣 ∈ ⋂ 𝐴𝑤𝑖𝑤𝑖∈𝑉∖{0,𝑣} . But 𝑤𝑖 ∉

𝐴𝑤𝑖
 for any 𝑖, which leads us to the conclusion 

that 𝑤𝑖 ∉ ⋂ 𝐴𝑤𝑖𝑤𝑖∈𝑉∖{0,𝑣} . Hence the vertex 𝑣 is 

the unique element in the intersection of all 

these sets. Therefore {𝑣} = ⋂ 𝐴𝑤𝑖𝑤𝑖∈𝑉∖{0,𝑣} , 

so {𝑣} is a finite intersection of sub basis 

elements ⇒ open. □    

 

Proposition 3.1.5. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then for any integer 𝑘 ≥ 1 with 2 ≤
2𝑘 < 𝑛, we have 𝐴2 = 𝐴2𝐾. 

Proof. Let 𝑣 ∈ 𝑉. A vertex 𝑣 ∈ 𝐴2 if and only 

if 𝑔. 𝑐. 𝑑(2, 𝑣) = 1 if and only if 

𝑔. 𝑐. 𝑑(2𝑘, 𝑣) = 1, so 𝑣 ∈ 𝐴2𝐾. Therefor 𝐴2 =
𝐴2𝐾. □ 

 

Corollary 3.1.6. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph with 𝑉 = ℤ𝑛 for 𝑛 > 4, then: 

1- For vertex 𝑣 = 2𝐾  such that, the 

integer 𝑘 ≥ 1 with 2 ≤ 2𝑘 < 𝑛. The 

set {𝑣} is not closed in the topological 

space (𝑉, 𝜏𝑆1
).  

2- The topological space (𝑉, 𝜏𝑆1
) is not 

𝑇0. 

Proof:  
1- Immediately from Proposition 3.1.5. 

Since |𝐴2| ≥ 2. □ 

2- Immediately from Proposition 3.1.5. 

Let 𝑣1 = 2 and 𝑣2 = 4. □ 

 

Remark 3.1.7. Proposition 6.2 in [7] does not 

hold in our framework because of the pendent 

vertex 0. As an example, in (ℤ5, 𝜏𝑆1
) the set 

{2, 4} ∈ 𝜏. But ({2, 4})𝑐 ∉ 𝜏. 

 

Proposition 3.1.8. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆1
), 

the only open sets containing the vertex 0 are  

𝑉 = ℤ𝑛 and 𝐴1. 

 

Proof. Since 𝑔. 𝑐. 𝑑(0,1) = 1 and for any 

another vertex 𝑣 ≠ 1 we have 𝑔. 𝑐. 𝑑(0, 𝑣) ≠ 1, 

so 0 ∈ 𝐴1, 0 ∉ 𝐴𝑣 , and 1 ∈ 𝐴𝑣 because 

𝑔. 𝑐. 𝑑(1, 𝑣) = 1. Hence 𝐴1⋃𝐴𝑣 =

{
𝐴1 𝑖𝑓 𝑣 = 1
𝑉 𝑖𝑓 𝑣 ≠ 1

. □ 

 

Proposition 3.1.9. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then (𝑉, 𝜏𝑆1
) is a disconnected 

topological space. 

 

Proof. Let 𝑈 = {1} and 𝑊 = 𝑈𝑐. Then by 

Proposition 3.1.2., we have 𝑈, 𝑊 ∈ 𝜏, 𝑈 ∪ 𝑊 =
𝑉, and 𝑈 ∩ 𝑊 = ∅. □ 

 

3.2 The topology (𝑽, 𝝉𝑺𝟐
) 

In this section, we investigate properties of 

the topological space (𝑉, 𝜏𝑆2
), where 𝑉 = ℤ𝑛 

and 𝑛 ≥ 4. 

 

Proposition 3.2.1. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆2
), 

the set {1} is an open but not closed. 

 

Proof. Proof. Since 𝑔. 𝑐. 𝑑(0, 𝑣) = 1 if and 

only if 𝑣 = 1, then 𝑂0 = {0,1} and 0 ∉ 𝑂𝑣  for 

any 𝑣 ≠ 1, so {1} = 𝑂0 ∩ 𝑂𝑣 is an open set. On 

the other hand, 𝑔. 𝑐. 𝑑(1, 𝑣) = 1 for all 𝑣 ∈ 𝑉 

that means every nonempty proper open set 𝑈 

must contains the vertex 1 , so 1 ∉ 𝑈𝑐 . Hence, 

the set {1} can-not be closed. □ 
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Proposition 3.2.2. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph, and let 𝑣 ∈ 𝑉 with 𝑣 ≠ 1. Then the 

singleton  𝐹 = {𝑣} is not open in the topological 

space (𝑉, 𝜏𝑆2
). 

 

Proof. Since 𝑔. 𝑐. 𝑑(1, 𝑣) = 1 for every 𝑣 ∈ 𝑉, 

the vertex 1 is adjacent to all other vertices in 

𝐺. Consequently, 1 belongs to the interior 𝐹° of 

𝐹, so 𝐹° ≠ 𝐹. Therefore 𝐹 is not open set. □      

 

Corollary 3.2.3. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆2
), 

every non-empty open set must contain the 

element 1. 

 

Proposition 3.2.4. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then (𝑉, 𝜏𝑆2
) is a connected topological 

space. 

 

Proof. Immediately from Corollary 3.2.3. 

 

Proposition 3.2.5. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then the topological space (𝑉, 𝜏𝑆2
) is not 

regular. 

 

Proof. By Corollary 3.2.3. If 𝐵 is a proper closed 

set of 𝑉, then 1 ∉ 𝐵. However, every open set 

containing 𝐵 must contain the vertex 1. 

Thus the vertex 1 and the closed set 𝐵 cannot be 

separated by disjoint open sets, violating the 

definition of a regular topological space. □ 

 

Proposition 3.2.6. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph. Then in the topological space (𝑉, 𝜏𝑆2
), 

the set {0} is closed.  

 

Proof. Let 𝑣 ≠ 2 be a prime vertex such that 

𝑚𝑣 > 𝑛 for any positive integer 1 < 𝑚 < 𝑛. 

Then by (Theorem 6) in [3], deg(𝑣) = 𝑛 − 1 so 

a vertex 𝑣 is adjacent to all vertices except 0, 

which means 𝑂𝑣 = 𝑋 ∖ {0} ∈ 𝜏. Hence {0} is 

closed set. □ 

 

Proposition 3.2.7. Let 𝐺 = (𝑉, 𝐸) be a divisor 

graph with 𝑉 = ℤ𝑛 for 𝑛 > 4 and suppose that 

𝑣 = 2𝐾  where 𝑘 ≥ 1 and 2 ≤ 2𝑘 < 𝑛. Then the 

singleton {𝑣} is a closed set in the topological 

space (𝑉, 𝜏𝑆2
).  

 

Proof. From the Proposition 3.1.5, we have 

𝑂2 ∖ {2} = 𝐴2𝐾 ∖ {2𝑘}. Now if we take all even 

vertices 𝑢𝑖 ≠ 2𝑘 with 1 ≤ 𝑢𝑖 < 𝑛 − 1, then 

from the definition of adjacency in the divisor 

graph, 𝑢𝑖 are adjacent to vertices 𝑢𝑖 − 1, 𝑢𝑖 + 1 

but not adjacent to the vertex 2𝑘, so 

(⋃ 𝐴𝑢𝑖∀𝑖
) = 𝑉 ∖ {2𝑘}. This shows that the 

complement of {2𝑘} is open in 𝜏𝑆, and 

therefore {2𝑘}  is closed. □ 

 

Theorem 3.2.8. The topological space (𝑉, 𝜏𝑆2
) 

is not a  𝑇0 space. 

 

Proof. Let 𝑢 and 𝑣 be distinct prime vertices 

different from 2 such that  

𝑚𝑢, 𝑟𝑣 ≥ 𝑛 for all integers 𝑚 with 1 < 𝑚 < 𝑛. 

By Theorem 6 in [3], this condition implies that 

both 𝑢 and 𝑣 are adjacent to every vertex 

except 0. 

Therefore, for any open set 𝑈 in 𝜏𝐺 other 

than 𝑂0 = {0,1}, 𝑢 and 𝑣 belong to 𝑈. 

Hence (𝑉, 𝜏𝑆2
) fails to satisfy the 𝑇0 separation 

axiom. □ 

 

4- Bitopological spaces on divisor graphs 
 

In the following we give some 

properties of a bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

)  

of a divisor graph 𝐺 = (𝑉, 𝐸) which is defined 

in a finite commutative ring (ℤ𝑛, +𝑛,∙𝑛).  

 

Proposition 4.1. In the bitopological space 

(𝑉, 𝜏𝑆1
, 𝜏𝑆2

) the sets {1} and 𝑉 ∖ {0} are open. 

 

Proof. If 𝑈1 = {1}, then by Propositions 

(3.1.2), and (3.2.1) we find that 𝑈1 is an open 

set in the bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

).  

Now to prove that 𝑈2 = 𝑉 ∖ {0} is an open set, 

one can choose any prime vertex 𝑣 ≠ 2 such 

that 𝑚𝑣 > 𝑛 for any positive integer 𝑚 < 𝑛. 

Then by (Theorem 6) in [3], 𝑑𝑒𝑔(𝑣) = 𝑛 − 2, 

so 𝐴𝑣 = 𝑉 ∖ {0, 𝑣} and since 𝑣 ∈ 𝐴𝑣−1which 

means  𝑈2 = 𝐴𝑣 ∪ 𝐴𝑣−1 ∈ 𝜏𝑆1
. On the other 

hand 𝑈𝑣 = 𝑂𝑣 ∈ 𝜏𝑆2
. Hence 𝑈2 is an open set in 

the bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

). □   

 

Proposition 4.2. The set {0} is closed in the 

bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

). 

 

Proof. See Propositions (3.1.1) and (3.2.6). □ 

 

Proposition 4.3 The bitopological space 

(𝑉, 𝜏𝑆1
, 𝜏𝑆2

) is not 𝑇0. 

 

Proof. See Corollary 3.1.6 and Theorem 

(3.2.8). □ 

 

Proposition 4.4 The bitopological space 

(𝑉, 𝜏𝑆1
, 𝜏𝑆2

) is not regular. 

 

Proof. See Propositions (3.2.5). □ 

 

5- Conclusion 

 

In this paper, we have introduced and 

studied a bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

) 

associated with divisor graphs defined over 
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finite commutative rings ℤ𝑛. We investigated 

fundamental topological properties such as 

connectedness, separation axioms, and the 

nature of open and closed sets in both 

topologies. 

Key findings include: 

▪ The space (𝑉, 𝜏𝑆1
) is disconnected and not 𝑇0, 

with distinguished behavior of vertices such as 

0 and 1. 

▪ The space (𝑉, 𝜏𝑆2
) is connected but not regular 

or 𝑇0, with vertex 1 playing a central role in 

every nonempty open set. 

▪ The bitopological space (𝑉, 𝜏𝑆1
, 𝜏𝑆2

) neither 

regular nor 𝑇0. Moreover, we have proved that 

sets such as {1} and 𝑉 \{0} are open, while {0} 

is closed. 

 

6- Further work 

These results illustrate how graphic 

properties of finite rings influence its 

topological structure. Future work may extend 

this approach by using (Definition 2.2.6) to 

make a topology representation for any graph 𝐺 

whether it was finite or infinite, and connected 

or disconnected. 
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