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Abstract— Crime prediction has gained increasing 

attention due to the growing availability of historical crime 

data and the need for data-driven decision-making in public 

safety. This study presents a comparative analysis of Long 

Short-Term Memory (LSTM) architectures for predicting 

the exact occurrence time of crimes based on temporal 

patterns. Three LSTM-based models are evaluated: Vanilla 

LSTM, Stacked LSTM, and Bidirectional LSTM. 

 

The proposed approach integrates time-based features and 

lag features to capture temporal dependencies within crime 

data. Model performance is assessed using standard 

regression metrics, including Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and Root Mean Squared 

Error (RMSE). Experimental results indicate that deeper 

LSTM architectures combined with temporal lag 

information improve prediction accuracy compared to the 

baseline model. 

 

This study demonstrates the effectiveness of LSTM-based 

models for crime occurrence prediction and provides 

insights into selecting suitable deep learning architectures 

for time-series crime analysis, supporting the development 

of more reliable tools for proactive crime prevention. 
 
Keywords— Crime Prediction; Deep Learning; LSTM; 

Time Series Forecasting; Crime Data Analysis. 

 

I. INTRODUCTION 

Crime remains one of the most pressing challenges 

faced by modern societies, posing threats to public 

safety, social stability, and economic development. 

Accurate prediction of when crimes are likely to occur 

is a key step toward enabling law enforcement agencies 

to allocate resources more effectively and take 

preventive measures in advance [1]. 

Recent advancements in artificial intelligence and deep 

learning have opened new opportunities for analyzing 

large-scale crime datasets. Unlike traditional statistical 

approaches, deep learning models such as Long Short-

Term Memory (LSTM) networks are specifically 

designed to capture temporal dependencies, making 

them highly effective in forecasting time-dependent 

events [2]. 

This paper focuses on the comparative evaluation of 

three LSTM-based models—Vanilla LSTM, Stacked 

LSTM, and Bidirectional LSTM—for predicting the 

exact date of crime occurrences. The primary objective 

is to determine which architecture provides the most 

accurate predictions, thereby contributing to the 

development of more reliable crime forecasting 

systems. 

II. BACKGROUND 

This section provides an overview of the 
fundamental concepts necessary to understand the 
models used in this study. It briefly explains the role of 
deep learning techniques in sequence modeling. In 
particular, it highlights the Long Short-Term Memory 
(LSTM) architecture, its key components, and how it 
addresses challenges such as vanishing gradients in 
traditional recurrent neural networks. This background 
serves as a foundation for understanding the 
comparative analysis conducted in this research. 

 

Crime prediction is an interdisciplinary research 
area that combines criminology, social sciences, and 
computer science. The main objective is to leverage 
historical crime records to forecast future crime 
occurrences and provide decision support for law 
enforcement agencies. Traditional time series 
approaches such as ARIMA and other statistical models 
have been widely used to model temporal patterns in 
crime data [3]. However, these approaches are often 
limited in capturing complex nonlinear dependencies. 

 

With the advancement of deep learning, Recurrent 
Neural Networks (RNNs) were introduced to handle 
sequential data by preserving information across time 
steps. Nevertheless, standard RNNs suffer from the 
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vanishing gradient problem, which restricts their ability 
to model long-term dependencies [4]. To overcome this 
limitation, Long Short-Term Memory (LSTM) 
networks were proposed to overcome the limitations of 
traditional RNNs, particularly the vanishing gradient 
problem. LSTMs extend RNNs by introducing a 
memory cell and gating mechanisms (the input, forget, 
and output gates) which allow them to retain and control 
relevant information over long sequences [5].  

 

As shown in Figure 1, which is adopted from 
Vidhya [6], the architecture of an LSTM cell 
demonstrates how these gates interact to regulate the 
flow of information. The forget gate decides which 
parts of the previous state should be discarded, the input 
gate updates the cell with new information, and the 
output gate determines the information passed to the 
next time step. This structure enables LSTMs to 
effectively capture both short-term and long-term 
dependencies in sequential data, making them highly 
suitable for time-series prediction tasks such as crime 
forecasting. 

 

 

Figure 1. LSTM architecture 

Moreover, variations of LSTM architectures have been 
developed to improve predictive power. Stacked LSTM 
refers to multiple LSTM layers stacked on top of each 
other, enabling the model to learn hierarchical temporal 
features. Bidirectional LSTM (BiLSTM) processes the 
sequence in both forward and backward directions, 
capturing past and future dependencies simultaneously 
[7]. These architectures have been widely applied in 
domains such as speech recognition, healthcare, and 
crime forecasting, showing superior performance in 
capturing temporal dynamics compared to traditional 
models [4]. These architectures show promising results 
in handling temporal crime patterns. 

 

     As shown in Figure 2, inspired by Nama [8], the 
illustration was modified and redesigned by the authors 
to represent the three main LSTM architectures: Vanilla 
LSTM, Stacked LSTM, and Bidirectional LSTM. 

 

The Vanilla LSTM is the simplest form of Long Short-
Term Memory network, consisting of a single LSTM 
layer followed by a dense output layer. It captures 
temporal dependencies in one direction (from past to 

future) and is effective for basic time-series forecasting 
tasks [4]. 

 

The Stacked LSTM extends the Vanilla architecture by 
adding multiple LSTM layers on top of each other. This 
hierarchical structure enables the model to learn more 
complex and abstract temporal patterns by allowing 
deeper feature extraction from the sequential data [7]. 

 

The Bidirectional LSTM (BiLSTM) further enhances 
the learning process by processing the input sequence in 
both forward and backward directions. This allows the 
model to capture dependencies from both past and 
future contexts, which is beneficial when the entire 
sequence is available and contextual understanding 
improves prediction accuracy [4]. 

 

 Figure 2. Architectures of Vanilla LSTM, Stacked LSTM, and 

Bidirectional LSTM 

III. LITERATURE REVIEW 

   This section reviews existing research relevant to 

crime prediction using machine learning and deep 

learning techniques. 

A. Machine learning Techniques 

     Crime prediction has been implemented in various 

applications. The first research paper, that utilized the 

same dataset employed in our research study, is titled 

"Crime Analysis Through Machine Learning” by 

Suhong Kim et al. [9]. Their study used two datasets: 

crime data from Vancouver’s open data catalog 

(including crime type, time, and location) and 

neighborhood boundaries. Two algorithms were 

applied: K-Nearest Neighbor (KNN) and Boosted 

Decision Tree. The findings indicated that the Boosted 

Decision Tree achieved an accuracy of 43.2%, 

outperforming the KNN, which attained an accuracy of 

41.9%.  

Difference: Our research study employs deep learning 

models, specifically LSTM variants, to effectively 
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capture temporal patterns that are not efficiently 

addressed by traditional machine learning models. 

     Zubi and Mahmmud [10] conducted a study in Libya 

entitled “Using data mining techniques to analyze 

crime patterns in the Libyan national crime data.” This 

study used manually collected crime data from police 

departments in Libya. The Simple K-Means algorithm 

was applied for clustering and Apriori for association 

rule mining. The outcomes suggested that two clusters 

were mainly associated with age, revealing higher crime 

rates observed in younger individuals. 

Difference: Unlike their limited dataset and clustering 

focus, our research study uses larger datasets and 

applies predictive deep learning algorithms 

(specifically LSTM) for time-based forecasting. 

      Mahmud, Nuha, and Sattar [11] conducted a study 

entitled “Crime Rate Prediction Using Machine 

Learning and Data Mining.” Over a period of three 

years, they gathered a dataset from Bangladesh, which 

was pre-processed to incorporate features like gender, 

age, and month. The algorithms that were used 

included KNN, Naïve Bayes, and Linear Regression, 

with KNN attaining an accuracy of 76.93%. 

Difference: While their study focused on demographic 

classification, our research study emphasizes 

sequential time-series prediction using LSTM 

architectures. 

B. Deep learning Techniques 

   Stec and Klabjan [12] conducted a study utilizing 

deep neural networks to predict daily crime counts 

across city grids in Chicago and Portland. Crime data 

was combined with weather, census, and transport data. 

This dataset was modeled with the application of RNN, 

CNN, and hybrid RNN–CNN architectures. The 

accuracy rates were recorded at 75.6% for Chicago and 

65.3% for Portland. 

Difference: Their work predicted daily aggregated 

counts, whereas our research study aims to predict 

specific date of crime occurrences. 

 
   Devi and Kavitha [13] developed a crime forecasting 

model based on the N-Beats algorithm, which 

integrates Recurrent Neural Networks (RNN) and 

Long Short-Term Memory (LSTM). The study utilized 

crime data from Sacramento (2014–2021), The N-

Beats model was implemented to predict future crime 

counts by capturing temporal patterns from historical 

data. Model performance was evaluated using Mean 

Absolute Error (MAE) and Symmetric Mean Absolute 

Percentage Error (SMAPE), achieving a low MAE 

value of 0.1407, indicating strong predictive accuracy. 

Difference: While their model predicts overall crime 

trends, the methodology we employ seeks to predict 

specific date of crime occurrences. 

 

     Finally, Safat et al. [14] conducted a comprehensive 

study to evaluate the effectiveness of machine learning 

(ML) and deep learning (DL) approaches for crime 

classification and forecasting. They utilized large, 

publicly available Chicago crime data (2001–2019) for 

classification tasks and Los Angeles crime data (2010–

2018) for time series forecasting. The study 

benchmarked several models, including Logistic 

Regression, Random Forest, XGBoost, LSTM, and 

ARIMA, they assessed their models using evaluation 

metrics, such as: accuracy, precision, recall, MAE, and 

RMSE. Their results demonstrated that XGBoost 

achieved the highest accuracy (94.00%) for crime 

classification and hotspot identification, surpassing all 

other ML models. For time series forecasting, the 

LSTM model outperformed the traditional ARIMA 

model, achieving an RMSE of 12.66 and MAE of 11.70 

for the Chicago dataset, and an RMSE of 8.78 and 

MAE of 6.00 for the Los Angeles dataset.  

Difference: They compared ML and DL models; our 

study focuses on optimizing LSTM architectures 

(Vanilla, Stacked, and Bidirectional) for enhanced 

temporal prediction. 

 

IV. DATA PREPARATION 

   This section describes the dataset used to train and 

test the three main LSTM architectures, including data 

pre-processing and feature engineering techniques 

which are applied to enhance the quality and usability 

of the data. 

A. Dataset Description 

Historical crime data, including details such as crime 

type, date, and neighborhood information, is 

downloaded from Kaggle website which is available at 

https://www.kaggle.com/datasets/wosaku/crime-in-

vancouver. 

The dataset contains attributes such as type, year, 

month, day, hour, minute, hundred_block, 

neighbourhood, x, y, latitude, and longitude. Each 

instance of the dataset is a crime record with date and 

timestamp. The dataset is covering the period from 

2003 to 2017 and comprising approximately 530,653 

crime records. 

B. Preprocessing 

   In the preprocessing phase, the dataset was cleaned 

to ensure its reliability and consistency. Duplicated and 

missing records were identified and removed, resulting 

in a refined dataset suitable for further analysis. This 

step was essential to eliminate noise that could 

negatively affect the training process and model 

performance. 

 

To illustrate the pre-processing phase, Figures 3 and 4 

show the dataset information before and after cleaning 

respectively. The initial dataset contained duplicated 

and missing records. For instance, the 'TYPE' attribute 

https://www.kaggle.com/datasets/wosaku/crime-in-vancouver
https://www.kaggle.com/datasets/wosaku/crime-in-vancouver
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originally had 530,652 records, of which 474,014 were 

non-null. After cleaning and removing incomplete 

records, the dataset became more consistent and ready 

for further analysis, with its size reduced to 474,014 

entries. This step ensured that only complete and valid 

records were retained for subsequent feature 

engineering and model training. 

 
Figure 3: Dataset information before preprocessing. 

 

 
 
Figure 4: Dataset information after  preprocessing. 

C. Feature Engineering 

   After preprocessing, a set of temporal features was 

created to capture patterns relevant to crime 

occurrence. The engineered features, include: 

TIMESTAMP: we generate date column by 

combining the individual attributes of year, month, 

day, and hour into a single date column was converted 

into a Unix timestamp (seconds since January 1, 1970) 

to allow for numerical modeling. 

DAY_OF_WEEK: Extracted from the timestamp to 

represent the weekday of the crime event. 

IS_WEEKEND: A binary feature that indicates 

whether the incident occurred on Saturday or Sunday. 

IS_HOLIDAY: Generated using the Python holidays 

library to mark whether the incident occurred on a 

public holiday. 

D.  Lag Feature Engineering 

    Lag features are temporal attributes that represent 

the values of a variable at previous time steps, allowing 

the model to capture short-term dependencies in the 

data. For this study, lag features were created from the 

crime occurrence timestamps by shifting the time 

series to generate Lag-1, Lag-2, and Lag-3 features. 

These features provide the model with historical 

context, enabling it to identify temporal patterns that 

influence future crime events. 

An illustration of lag feature generation is shown in 

Table I where the original timestamp column is 

expanded to include three lagged versions (Lag 1, Lag 

2, and Lag 3). For any given row, the Lag 1 feature 

contains the timestamp from the preceding row, Lag 2 

contains the timestamp from two rows prior, and so on. 

These lagged values allow the model to learn from past 

events, which is particularly important in time-series 

forecasting where past occurrences strongly affect 

future outcomes. 

The NaN (Not a Number) values appear in the initial 

rows because no preceding data exists for the first few 

entries in the time series. For example, the first row has 

no prior data, so all its lag features are NaN. These 

missing values are an expected outcome of the lagging 

process and are typically handled by removing the 

affected rows 

Table I: Lag feature generation from TIMESTAMP

 

In practice, lag features were integrated only in the 

Stacked LSTM and Bidirectional LSTM models. This 

decision was motivated by the need to enhance these 

models’ ability to capture sequential dependencies over 

time. 

V. MODEL BUILDING 

 

   In this section, we implemented three deep learning 

models to forecast crime occurrences based on 

temporal features, these are: 

Vanilla LSTM, Stacked LSTM, and Bidirectional 

LSTM models.  

 

1) Vanilla LSTM Model 

As illustrated in Figure 5, the Vanilla LSTM Diagram 

consists of a single LSTM layer with 150 units, this 

number was chosen after experimenting with 

commonly used values such as 100, 150, and 200. It is 
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observed that 150 units offered the best trade-off 

between model accuracy and computational efficiency. 

The single LSTM layer is followed by a dropout layer 

(40% of the units are dropped to reduce overfitting). 

Similarly, the 40% dropout rate was selected after 

testing multiple rates (e.g., 20%, 30%, 40%, and 50%). 

It was found that a 40% dropout provided the optimal 

balance between preventing overfitting and 

maintaining sufficient learning capacity. Lower 

dropout values did not sufficiently reduce overfitting, 

while higher ones caused the model to lose important 

temporal information during training. Finally, a 

dense output layer for timestamp prediction. This 

baseline architecture captures temporal dependencies 

without introducing additional complexity.  

During model building, the dataset was divided into 

training and validation subsets using an 80/20 split 

ratio to ensure a fair evaluation of the model’s 

generalization capability. The model was trained using 

the Adam optimizer and Mean Squared Error (MSE) as 

the loss function, as it is well-suited for continuous 

value prediction tasks. Training was performed over 

multiple epochs until the validation loss stabilized, 

indicating that the model had effectively learned 

temporal crime patterns from the historical data. 

 
                  
                   Figure 5 Vanilla LSTM model Diagram. 

 

2) Stacked LSTM Model 

The Stacked LSTM model includes two LSTM layers 

stacked on top of each other to capture deeper temporal 

dependencies. Lag features were additionally 

introduced at the input stage to enrich the 

representation of short-term patterns. A dropout layer 

and dense output layer complete the Diagram. Figure 6 

illustrates the Diagram of the Stacked LSTM model. 

 
 

Figure 6 Stacked  LSTM model Diagram. 

3) Bidirectional LSTM Model 

Figure 7 illustrates the Diagram of the Bidirectional 

LSTM model. The Bidirectional LSTM model 

processes the input sequence in both forward and 

backward directions, allowing the model to capture 

temporal dependencies from past and future contexts 

simultaneously. Similar to the stacked model, lag 

features were also introduced in this architecture to 

enhance accuracy 

 
 

Figure 7  Bidirectional  LSTM model Diagram. 
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4) Specific Crime–Neighborhood LSTM Model 

The Specific LSTM model extends the Stacked LSTM 

architecture based on its superior performance in crime 

occurrence time prediction. By focusing on the most 

frequent crime type within the most frequently reported 

neighborhood, the model reduces data heterogeneity 

and enables more focused temporal learning. The same 

preprocessing, feature engineering, and lag feature 

construction steps applied in the previous models are 

retained to capture short-term temporal dependencies. 

The network architecture itself remains identical to that 

of the Stacked LSTM model; the only distinction is an 

initial data filtering step performed prior to training, 

where the dataset is restricted to the most frequent 

crime type in the most frequently reported 

neighborhood. 

VI. MODELS’ RESULTS AND PERFORMANCE 

   This section discusses the performance evaluation 

concerning the three LSTM-based models used for 

predicting crime dates. These three models were built 

and tested. The performance of each model was 

measured using three standard evaluation metrics — 

Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE). These 

metrics, which are specifically used to assess the built 

models, are discussed. 

 
 Table II: A summary of the obtained results for each model. 

 
Measure 

 

Model  

 MSE MAE RMSE 

Vanilla LSTM 0.0003809739 0.01654 0.01951 

Stacked LSTM (with 
Lag Features) 

0.0000016893 0.00104 0.00129 

Bidirectional LSTM 

(with Lag Features) 

0.0000017653 0.00156 0.00132 

Specific Model 0.0000045435 0.00168 0.00213 

As shown in Table II, the Stacked LSTM model with 

lag features achieved the best overall performance 

among all developed models. It recorded the lowest 

error values across all evaluation metrics, with MSE = 

0.0000016893, MAE = 0.0010452796, and RMSE = 

0.00129, indicating its superior capability in capturing 

temporal dependencies and producing highly accurate 

crime occurrence time predictions. 

The Bidirectional LSTM model with lag features 

produced slightly higher error values (MSE = 

0.0000017653, MAE = 0.0015660838, RMSE = 

0.00132). This suggests that processing sequences in 

both forward and backward directions did not yield 

additional performance benefits for this strictly time-

dependent prediction task. 

The Specific Model, which focuses on the most 

frequent crime type within the most frequently reported 

neighborhood, achieved competitive performance with 

MSE = 0.0000045435, MAE = 0.00168, and RMSE = 

0.00213. Although its error values are slightly higher 

than those of the general Stacked LSTM model, the 

results demonstrate that targeted data filtering can still 

provide reliable and more focused predictions, offering 

practical value for localized crime analysis. 

Finally, the Vanilla LSTM model recorded the highest 

error rates (MSE = 0.0003809739, MAE = 

0.0165465735, RMSE = 0.01951), confirming that 

deeper architectures and the incorporation of lag 

features play a crucial role in enhancing prediction 

accuracy. 

VII. CONCLUSIONS 

This study highlights the effectiveness of LSTM-based 

deep learning models for crime occurrence time 

prediction. The experimental results demonstrate that 

incorporating lag features and adopting deeper 

architectures significantly improves predictive 

accuracy. Specifically, the Stacked LSTM model 

achieved lower error values compared to both Vanilla 

and Bidirectional LSTM models across all evaluation 

metrics with an MSE of 0.00000168, an RMSE of 

0.00129, and an MAE of 0.00104. Although the 

Bidirectional LSTM captures temporal dependencies 

from both forward and backward directions, it did not 

outperform the Stacked LSTM in this time-dependent 

prediction task. 

Furthermore,The proposed Specific Model, which 

focuses on the most frequent crime type within the 

most frequently reported neighborhood, achieved an 

MSE of 0.00000454, an RMSE of 0.00213, and an 

MAE of 0.00168. Although these error values are 

slightly higher than those of the general Stacked LSTM 

model, they remain sufficiently low to support reliable 

and practically actionable predictions. 

These numerical results confirm that feature 

engineering, model depth, and problem-specific data 

filtering play a critical role in enhancing prediction 

performance. Moreover, the use of consistent 

evaluation metrics (MSE, RMSE, and MAE) ensures a 

fair and transparent comparison across all developed 

models. 

VIII. FUTURE WORK 

 Future research could focus on integrating external 

contextual data, such as weather conditions, population 
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density, or socio-economic indicators, to further 

improve prediction accuracy. In addition, exploring 

hybrid deep learning models that combine LSTM with 

attention mechanisms or spatial–temporal networks 

may capture more complex relationships between time 

and location. Finally, deploying these models in real-

time prediction systems could provide valuable support 

for law enforcement. 
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