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Abstract— Crime prediction has gained increasing
attention due to the growing availability of historical crime
data and the need for data-driven decision-making in public
safety. This study presents a comparative analysis of Long
Short-Term Memory (LSTM) architectures for predicting
the exact occurrence time of crimes based on temporal
patterns. Three LSTM-based models are evaluated: Vanilla
LSTM, Stacked LSTM, and Bidirectional LSTM.

The proposed approach integrates time-based features and
lag features to capture temporal dependencies within crime
data. Model performance is assessed using standard
regression metrics, including Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE). Experimental results indicate that deeper
LSTM architectures combined with temporal lag
information improve prediction accuracy compared to the
baseline model.

This study demonstrates the effectiveness of LSTM-based
models for crime occurrence prediction and provides
insights into selecting suitable deep learning architectures
for time-series crime analysis, supporting the development
of more reliable tools for proactive crime prevention.

Keywords— Crime Prediction; Deep Learning; LSTM;
Time Series Forecasting; Crime Data Analysis.

I. INTRODUCTION

Crime remains one of the most pressing challenges
faced by modern societies, posing threats to public
safety, social stability, and economic development.
Accurate prediction of when crimes are likely to occur
is a key step toward enabling law enforcement agencies
to allocate resources more effectively and take
preventive measures in advance [1].

Recent advancements in artificial intelligence and deep
learning have opened new opportunities for analyzing
large-scale crime datasets. Unlike traditional statistical
approaches, deep learning models such as Long Short-
Term Memory (LSTM) networks are specifically
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designed to capture temporal dependencies, making
them highly effective in forecasting time-dependent
events [2].

This paper focuses on the comparative evaluation of
three LSTM-based models—Vanilla LSTM, Stacked
LSTM, and Bidirectional LSTM—for predicting the
exact date of crime occurrences. The primary objective
is to determine which architecture provides the most
accurate predictions, thereby contributing to the
development of more reliable crime forecasting
systems.

I11. BACKGROUND

This section provides an overview of the
fundamental concepts necessary to understand the
models used in this study. It briefly explains the role of
deep learning techniques in sequence modeling. In
particular, it highlights the Long Short-Term Memory
(LSTM) architecture, its key components, and how it
addresses challenges such as vanishing gradients in
traditional recurrent neural networks. This background
serves as a foundation for understanding the
comparative analysis conducted in this research.

Crime prediction is an interdisciplinary research
area that combines criminology, social sciences, and
computer science. The main objective is to leverage
historical crime records to forecast future crime
occurrences and provide decision support for law
enforcement  agencies. Traditional time series
approaches such as ARIMA and other statistical models
have been widely used to model temporal patterns in
crime data [3]. However, these approaches are often
limited in capturing complex nonlinear dependencies.

With the advancement of deep learning, Recurrent
Neural Networks (RNNs) were introduced to handle
sequential data by preserving information across time
steps. Nevertheless, standard RNNs suffer from the
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vanishing gradient problem, which restricts their ability
to model long-term dependencies [4]. To overcome this
limitation, Long Short-Term Memory (LSTM)
networks were proposed to overcome the limitations of
traditional RNNSs, particularly the vanishing gradient
problem. LSTMs extend RNNs by introducing a
memory cell and gating mechanisms (the input, forget,
and output gates) which allow them to retain and control
relevant information over long sequences [5].

As shown in Figure 1, which is adopted from
Vidhya [6], the architecture of an LSTM cell
demonstrates how these gates interact to regulate the
flow of information. The forget gate decides which
parts of the previous state should be discarded, the input
gate updates the cell with new information, and the
output gate determines the information passed to the
next time step. This structure enables LSTMs to
effectively capture both short-term and long-term
dependencies in sequential data, making them highly
suitable for time-series prediction tasks such as crime
forecasting.

Forget Gate

Input Gate Output Gate
Figure 1. LSTM architecture

Moreover, variations of LSTM architectures have been
developed to improve predictive power. Stacked LSTM
refers to multiple LSTM layers stacked on top of each
other, enabling the model to learn hierarchical temporal
features. Bidirectional LSTM (BiLSTM) processes the
sequence in both forward and backward directions,
capturing past and future dependencies simultaneously
[7]. These architectures have been widely applied in
domains such as speech recognition, healthcare, and
crime forecasting, showing superior performance in
capturing temporal dynamics compared to traditional
models [4]. These architectures show promising results
in handling temporal crime patterns.

As shown in Figure 2, inspired by Nama [8], the
illustration was modified and redesigned by the authors
to represent the three main LSTM architectures: Vanilla
LSTM, Stacked LSTM, and Bidirectional LSTM.

The Vanilla LSTM is the simplest form of Long Short-
Term Memory network, consisting of a single LSTM
layer followed by a dense output layer. It captures
temporal dependencies in one direction (from past to
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future) and is effective for basic time-series forecasting
tasks [4].

The Stacked LSTM extends the Vanilla architecture by
adding multiple LSTM layers on top of each other. This
hierarchical structure enables the model to learn more
complex and abstract temporal patterns by allowing
deeper feature extraction from the sequential data [7].

The Bidirectional LSTM (BILSTM) further enhances
the learning process by processing the input sequence in
both forward and backward directions. This allows the
model to capture dependencies from both past and
future contexts, which is beneficial when the entire
sequence is available and contextual understanding
improves prediction accuracy [4].
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Figure 2. Architectures of Vanilla LSTM, Stacked LSTM, and
Bidirectional LSTM

I11. LITERATURE REVIEW

This section reviews existing research relevant to
crime prediction using machine learning and deep
learning techniques.

A.Machine learning Techniques

Crime prediction has been implemented in various
applications. The first research paper, that utilized the
same dataset employed in our research study, is titled
"Crime Analysis Through Machine Learning” by
Suhong Kim et al. [9]. Their study used two datasets:
crime data from Vancouver’s open data catalog
(including crime type, time, and location) and
neighborhood boundaries. Two algorithms were
applied: K-Nearest Neighbor (KNN) and Boosted
Decision Tree. The findings indicated that the Boosted
Decision Tree achieved an accuracy of 43.2%,
outperforming the KNN, which attained an accuracy of
41.9%.

Difference: Our research study employs deep learning
models, specifically LSTM variants, to effectively
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capture temporal patterns that are not efficiently
addressed by traditional machine learning models.

Zubi and Mahmmud [10] conducted a study in Libya
entitled “Using data mining techniques to analyze
crime patterns in the Libyan national crime data.” This
study used manually collected crime data from police
departments in Libya. The Simple K-Means algorithm
was applied for clustering and Apriori for association
rule mining. The outcomes suggested that two clusters
were mainly associated with age, revealing higher crime
rates observed in younger individuals.
Difference: Unlike their limited dataset and clustering
focus, our research study uses larger datasets and
applies  predictive deep learning  algorithms
(specifically LSTM) for time-based forecasting.

Mahmud, Nuha, and Sattar [11] conducted a study
entitted “Crime Rate Prediction Using Machine
Learning and Data Mining.” Over a period of three
years, they gathered a dataset from Bangladesh, which
was pre-processed to incorporate features like gender,
age, and month. The algorithms that were used
included KNN, Naive Bayes, and Linear Regression,
with  KNN attaining an accuracy of 76.93%.
Difference: While their study focused on demographic
classification, our research study emphasizes
sequential time-series prediction using LSTM
architectures.

B.Deep learning Techniques

Stec and Klabjan [12] conducted a study utilizing
deep neural networks to predict daily crime counts
across city grids in Chicago and Portland. Crime data
was combined with weather, census, and transport data.
This dataset was modeled with the application of RNN,
CNN, and hybrid RNN-CNN architectures. The
accuracy rates were recorded at 75.6% for Chicago and
65.3% for Portland.

Difference: Their work predicted daily aggregated
counts, whereas our research study aims to predict
specific date of crime occurrences.

Devi and Kavitha [13] developed a crime forecasting
model based on the N-Beats algorithm, which
integrates Recurrent Neural Networks (RNN) and
Long Short-Term Memory (LSTM). The study utilized
crime data from Sacramento (2014-2021), The N-
Beats model was implemented to predict future crime
counts by capturing temporal patterns from historical
data. Model performance was evaluated using Mean
Absolute Error (MAE) and Symmetric Mean Absolute
Percentage Error (SMAPE), achieving a low MAE
value of 0.1407, indicating strong predictive accuracy.
Difference: While their model predicts overall crime
trends, the methodology we employ seeks to predict
specific date of crime occurrences.

DOI:10.5281/zen0do.18073392

Finally, Safat et al. [14] conducted a comprehensive

study to evaluate the effectiveness of machine learning
(ML) and deep learning (DL) approaches for crime
classification and forecasting. They utilized large,
publicly available Chicago crime data (2001-2019) for
classification tasks and Los Angeles crime data (2010-
2018) for time series forecasting. The study
benchmarked several models, including Logistic
Regression, Random Forest, XGBoost, LSTM, and
ARIMA, they assessed their models using evaluation
metrics, such as: accuracy, precision, recall, MAE, and
RMSE. Their results demonstrated that XGBoost
achieved the highest accuracy (94.00%) for crime
classification and hotspot identification, surpassing all
other ML models. For time series forecasting, the
LSTM model outperformed the traditional ARIMA
model, achieving an RMSE of 12.66 and MAE of 11.70
for the Chicago dataset, and an RMSE of 8.78 and
MAE of 6.00 for the Los Angeles dataset.
Difference: They compared ML and DL models; our
study focuses on optimizing LSTM architectures
(Vanilla, Stacked, and Bidirectional) for enhanced
temporal prediction.

IV. DATA PREPARATION

This section describes the dataset used to train and
test the three main LSTM architectures, including data
pre-processing and feature engineering techniques
which are applied to enhance the quality and usability
of the data.

A. Dataset Description

Historical crime data, including details such as crime
type, date, and neighborhood information, is
downloaded from Kaggle website which is available at
https://www.kaggle.com/datasets/wosaku/crime-in-
vancouver.

The dataset contains attributes such as type, year,
month, day, hour, minute, hundred_block,
neighbourhood, x, y, latitude, and longitude. Each
instance of the dataset is a crime record with date and
timestamp. The dataset is covering the period from
2003 to 2017 and comprising approximately 530,653
crime records.

B. Preprocessing

In the preprocessing phase, the dataset was cleaned
to ensure its reliability and consistency. Duplicated and
missing records were identified and removed, resulting
in a refined dataset suitable for further analysis. This
step was essential to eliminate noise that could
negatively affect the training process and model
performance.

To illustrate the pre-processing phase, Figures 3 and 4
show the dataset information before and after cleaning
respectively. The initial dataset contained duplicated
and missing records. For instance, the 'TYPE' attribute
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originally had 530,652 records, of which 474,014 were
non-null. After cleaning and removing incomplete
records, the dataset became more consistent and ready
for further analysis, with its size reduced to 474,014
entries. This step ensured that only complete and valid
records were retained for subsequent feature
engineering and model training.

df.info()

ntries, ©

(total 12 columns):

Figure 3: Dataset information before preprocessing.

df.info()

v

¥v <class ‘pandas.core.frame.DataFrame’
Index: 474014 entries, @ to 530651
Data columns (total 12 columns):

#  Column Non-Null Count Dtype
2] TYPE 474014 non-null object
1 YEAR 474014 non-null int64
2 MONTH 474014 non-null int64
3 DAY 474014 non-null int64
4 HOUR 474014 non-null floaté4
S  MINUTE 474014 non-null floaté4
6  HUNDRED_BLOCK 474014 non-null object
7 NEIGHBOURHOOD 474014 non-null object
8 X 474014 non-null floaté4
9 Y 474014 non-null floaté64

10 Latitude 474014 non-null float64

11 Longitude 474014 non-null floaté4
dtypes: float64(6), int64(3), object(3)
memory usage: 47.0+ M8

Figure 4: Dataset information after preprocessing.

C. Feature Engineering

After preprocessing, a set of temporal features was
created to capture patterns relevant to crime
occurrence. The engineered features, include:

TIMESTAMP: we generate date column by
combining the individual attributes of year, month,
day, and hour into a single date column was converted
into a Unix timestamp (seconds since January 1, 1970)
to allow for numerical modeling.

DAY_OF_WEEK: Extracted from the timestamp to
represent the weekday of the crime event.

IS WEEKEND: A binary feature that indicates
whether the incident occurred on Saturday or Sunday.

IS HOLIDAY: Generated using the Python holidays
library to mark whether the incident occurred on a
public holiday.
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D. Lag Feature Engineering

Lag features are temporal attributes that represent
the values of a variable at previous time steps, allowing
the model to capture short-term dependencies in the
data. For this study, lag features were created from the
crime occurrence timestamps by shifting the time
series to generate Lag-1, Lag-2, and Lag-3 features.
These features provide the model with historical
context, enabling it to identify temporal patterns that
influence future crime events.

An illustration of lag feature generation is shown in
Table | where the original timestamp column is
expanded to include three lagged versions (Lag 1, Lag
2, and Lag 3). For any given row, the Lag 1 feature
contains the timestamp from the preceding row, Lag 2
contains the timestamp from two rows prior, and so on.
These lagged values allow the model to learn from past
events, which is particularly important in time-series
forecasting where past occurrences strongly affect
future outcomes.

The NaN (Not a Number) values appear in the initial
rows because no preceding data exists for the first few
entries in the time series. For example, the first row has
no prior data, so all its lag features are NaN. These
missing values are an expected outcome of the lagging
process and are typically handled by removing the
affected rows

Table 1: Lag feature generation from TIMESTAMP
TIMESTAMP! LagiL, Lag 2 Lag|3)
2017-03-01 10:36 NaN NaN NaN
2017-03-03 21:50 2017-03-01 10:36 NaN NaN
2017-03-04 06:12 2017-03-03 21:50 2017-03-01 10:36 NaN
2017-03-07 14:47 2017-03-04 06:12 2017-03-03 21:50 2017-03-01 10:36
2017-03-08 03:14 2017-03-07 14:.47 2017-03-04 06:12 2017-03-03 21:50

In practice, lag features were integrated only in the
Stacked LSTM and Bidirectional LSTM models. This
decision was motivated by the need to enhance these
models’ ability to capture sequential dependencies over
time.

V. MODEL BUILDING

In this section, we implemented three deep learning
models to forecast crime occurrences based on
temporal features, these are:

Vanilla LSTM, Stacked LSTM, and Bidirectional
LSTM models.

1) Vanilla LSTM Model

As illustrated in Figure 5, the Vanilla LSTM Diagram
consists of a single LSTM layer with 150 units, this
number was chosen after experimenting with
commonly used values such as 100, 150, and 200. It is
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observed that 150 units offered the best trade-off
between model accuracy and computational efficiency.
The single LSTM layer is followed by a dropout layer
(40% of the units are dropped to reduce overfitting).
Similarly, the 40% dropout rate was selected after
testing multiple rates (e.g., 20%, 30%, 40%, and 50%).
It was found that a 40% dropout provided the optimal
balance  between preventing overfitting and
maintaining sufficient learning capacity. Lower
dropout values did not sufficiently reduce overfitting,
while higher ones caused the model to lose important
temporal information during training. Finally, a
dense output layer for timestamp prediction. This
baseline architecture captures temporal dependencies
without introducing additional complexity.

During model building, the dataset was divided into
training and validation subsets using an 80/20 split
ratio to ensure a fair evaluation of the model’s
generalization capability. The model was trained using
the Adam optimizer and Mean Squared Error (MSE) as
the loss function, as it is well-suited for continuous
value prediction tasks. Training was performed over
multiple epochs until the validation loss stabilized,
indicating that the model had effectively learned
temporal crime patterns from the historical data.

Input
(seq_length, n_features)

l

LSTM Layer
(150 units, return_sequence = False)

l

Dropout Layer
40%

l

Dense Layer
( 1 unit, Linear Activation )

|

Output Layer
( predicted value )

Figure 5 Vanilla LSTM model Diagram.

2) Stacked LSTM Model

The Stacked LSTM model includes two LSTM layers
stacked on top of each other to capture deeper temporal
dependencies. Lag features were additionally
introduced at the input stage to enrich the
representation of short-term patterns. A dropout layer
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and dense output layer complete the Diagram. Figure 6
illustrates the Diagram of the Stacked LSTM model.

Input
(seq_length, n_features)

l

_ First LSTM Layer
(150 units, return_sequence = True)

}

Dropout Layer
40%

}

Second LSTM Layer
(150 units, return_sequence = False)

l

Dropout Layer
40%

}

Dense Layer
{1 unit. Linear Activation )

l

( predictad value )

Figure 6 Stacked LSTM model Diagram.

3) Bidirectional LSTM Model

Figure 7 illustrates the Diagram of the Bidirectional
LSTM model. The Bidirectional LSTM model
processes the input sequence in both forward and
backward directions, allowing the model to capture
temporal dependencies from past and future contexts
simultaneously. Similar to the stacked model, lag
features were also introduced in this architecture to
enhance accuracy

Input Layer (seq_length, n_features)

——

Bidirectional LSTM (150 units)

!

Dropout (40%)

Bi-LSTM Mechanism:
¢ Processes sequence forward & backward, merges outputs

Bidirectional LSTM (150 units)

!}

Dropout (40%)

7 N/

Merged Output

Forward LSTM Backward LSTM

Dense Layer (1 unit, linear)

P "I

Output (Predicted Timestamp)

Figure 7 Bidirectional LSTM model Diagram.
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4) Specific Crime—Neighborhood LSTM Maodel

The Specific LSTM model extends the Stacked LSTM
architecture based on its superior performance in crime
occurrence time prediction. By focusing on the most
frequent crime type within the most frequently reported
neighborhood, the model reduces data heterogeneity
and enables more focused temporal learning. The same
preprocessing, feature engineering, and lag feature
construction steps applied in the previous models are
retained to capture short-term temporal dependencies.
The network architecture itself remains identical to that
of the Stacked LSTM model; the only distinction is an
initial data filtering step performed prior to training,
where the dataset is restricted to the most frequent
crime type in the most frequently reported
neighborhood.

VI.MODELS’ RESULTS AND PERFORMANCE

This section discusses the performance evaluation
concerning the three LSTM-based models used for
predicting crime dates. These three models were built
and tested. The performance of each model was
measured using three standard evaluation metrics —
Mean Squared Error (MSE), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE). These
metrics, which are specifically used to assess the built
models, are discussed.

Table I1: A summary of the obtained results for each model.

Measure
Mode »

’ MSE MAE RMSE
Vanilla LSTM 0.0003809739 | 0.01654 | 0.01951
Stacked LSTM (with 0.0000016893 | 0.00104 | 0.00129
Lag Features)

Bidirectional LSTM 0.0000017653 | 0.00156 | 0.00132
(with Lag Features)
Specific Model 0.0000045435 | 0.00168 | 0.00213

As shown in Table Il, the Stacked LSTM model with
lag features achieved the best overall performance
among all developed models. It recorded the lowest
error values across all evaluation metrics, with MSE =
0.0000016893, MAE = 0.0010452796, and RMSE =
0.00129, indicating its superior capability in capturing
temporal dependencies and producing highly accurate
crime occurrence time predictions.

The Bidirectional LSTM model with lag features
produced slightly higher error values (MSE =
0.0000017653, MAE = 0.0015660838, RMSE =
0.00132). This suggests that processing sequences in
both forward and backward directions did not yield
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additional performance benefits for this strictly time-
dependent prediction task.

The Specific Model, which focuses on the most
frequent crime type within the most frequently reported
neighborhood, achieved competitive performance with
MSE = 0.0000045435, MAE = 0.00168, and RMSE =
0.00213. Although its error values are slightly higher
than those of the general Stacked LSTM model, the
results demonstrate that targeted data filtering can still
provide reliable and more focused predictions, offering
practical value for localized crime analysis.

Finally, the Vanilla LSTM model recorded the highest
error rates (MSE = 0.0003809739, MAE =
0.0165465735, RMSE = 0.01951), confirming that
deeper architectures and the incorporation of lag
features play a crucial role in enhancing prediction
accuracy.

VII. CONCLUSIONS

This study highlights the effectiveness of LSTM-based
deep learning models for crime occurrence time
prediction. The experimental results demonstrate that
incorporating lag features and adopting deeper
architectures  significantly  improves predictive
accuracy. Specifically, the Stacked LSTM model
achieved lower error values compared to both Vanilla
and Bidirectional LSTM models across all evaluation
metrics with an MSE of 0.00000168, an RMSE of
0.00129, and an MAE of 0.00104. Although the
Bidirectional LSTM captures temporal dependencies
from both forward and backward directions, it did not
outperform the Stacked LSTM in this time-dependent
prediction task.

Furthermore, The proposed Specific Model, which
focuses on the most frequent crime type within the
most frequently reported neighborhood, achieved an
MSE of 0.00000454, an RMSE of 0.00213, and an
MAE of 0.00168. Although these error values are
slightly higher than those of the general Stacked LSTM
model, they remain sufficiently low to support reliable
and practically actionable predictions.

These numerical results confirm that feature
engineering, model depth, and problem-specific data
filtering play a critical role in enhancing prediction
performance. Moreover, the use of consistent
evaluation metrics (MSE, RMSE, and MAE) ensures a
fair and transparent comparison across all developed
models.

VIII. FUTURE WORK

Future research could focus on integrating external
contextual data, such as weather conditions, population
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density, or socio-economic indicators, to further
improve prediction accuracy. In addition, exploring
hybrid deep learning models that combine LSTM with
attention mechanisms or spatial-temporal networks
may capture more complex relationships between time
and location. Finally, deploying these models in real-
time prediction systems could provide valuable support
for law enforcement.
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