
    Academy journal for Basic and Applied Sciences (AJBAS)  Volume 7, issue 2, 2025. 

 

DOI:10.5281/zenodo.18113323                                            1 

Comparative Application of Artificial Neural 

Networks and ANFIS Techniques for Short-Term 

Load Forecasting in the Western Libyan Power Grid

 Naji Eltawil1, Abdelbaset Ihbal (2), and 

Sofyian Forjani 3 

1,3Higher Institute for Water 

Technology, Agelat, Libya, email: 
eltawilammar1003@yahoo.com 

2 Dept. of Electrical and Computer 

Engineering, School of Applied Science 

and Engineering, Libyan Academy, 

Tripoli, Libya  
email: a.ihbal@academy.edu.ly  

Abstract— The stability and economic efficiency of modern 

power systems rely profoundly on accurate short-term load 

forecasting (STLF). This investigation presents a comparative 

assessment of two artificial intelligence methodologies,Artificial 

Neural Networks (ANN) and the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) for STLF within the Western Libyan 

power grid. This network operates under considerable strain 

from extreme climatic conditions and infrastructural 

limitations, which introduce pronounced volatility and non-

linearity into load patterns. Leveraging a comprehensive 2023 

dataset from the General Electricity Company of Libya 

(GECOL), which integrates historical load data with critical 

meteorological variables, two models in MATLAB were 

developed and simulated. The findings reveal a decisive 

superiority of the ANFIS model, which achieved a remarkable 

average forecasting error of just 0.50%, starkly contrasting with 

the ANN model's error of 8.37%. This performance is attributed 

to the ANFIS architecture, which effectively marries the 

adaptive learning capabilities of neural networks with the 

transparent, rule-based reasoning of fuzzy logic. This synergy 

renders ANFIS an exceptionally accurate tool for short-term 

load forecasting in complex and uncertain environments like 

Libya. 
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I. INTRODUCTION 

The relentless balancing of electricity supply with 
consumer demand forms the cornerstone of a secure and 
efficient power grid. At the heart of this endeavor lies short-
term load forecasting (STLF), a discipline dedicated to 
predicting load from a few hours to a week ahead. Its accuracy 
is not merely an operational convenience but a critical 
necessity, directly enabling effective unit commitment, 
economic dispatch, and the prevention of system instability 
[1]. 

Yet, the pursuit of forecasting precision is far from 
universal. In many developing nations, power grids are tasked 
with functioning under a unique set of adversities. The 

Western Libyan grid exemplifies this challenge, navigating a 
landscape of aging infrastructure, rapidly escalating demand, 
and a climate characterized by extreme heat and frequent 
sandstorms. These elements conspire to create highly dynamic 
and non-linear load profiles that consistently confound 
traditional forecasting techniques, such as regression analysis 
and ARIMA models [2, 3]. As these conventional methods 
falter, the imperative for more sophisticated, adaptive 
modeling approaches becomes undeniable. 

The emergence of Artificial Intelligence (AI) has provided 
a powerful arsenal for this very purpose. Artificial Neural 
Networks (ANNs), inspired by biological cognitive processes, 
have demonstrated a formidable capacity to discern intricate, 
non-linear patterns directly from historical data, establishing 
themselves as a leading solution for STLF [4, 5]. Their 
principal limitation, however, is their notorious "black box" 
nature; while they often yield accurate predictions, the 
underlying logic remains opaque, hindering interpretability 
and trust. Seeking to reconcile high performance with 
transparency, researchers developed hybrid paradigms like the 
Adaptive Neuro-Fuzzy Inference System (ANFIS). This 
framework elegantly integrates the computational learning 
strength of neural networks with the intuitive, linguistic rule-
structure of fuzzy logic, offering a model that can both learn 
from data and explain its reasoning in human-understandable 
terms [6, 7]. 

While the global literature on AI-based STLF is extensive, 
a focused inquiry into its application within the distinct and 
demanding context of Libya remains notably scarce. Although 
preliminary studies have explored ANNs in the region [8], a 
rigorous, comparative analysis pitting them against a hybrid 
model like ANFIS has been absent. This gap leaves a critical 
question unanswered: which AI architecture is truly most 
capable of managing the specific volatilities of the Libyan 
grid? 

This study directly addresses that question. A systematic 
empirical comparison of ANN and ANFIS models was 
conducted for STLF, utilizing a robust dataset from GECOL. 
Our objective is to move beyond theoretical appeal and 
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determine, through concrete performance metrics, the most 
reliable forecasting tool for enhancing grid operability in 
Libya. The conclusions drawn are expected to hold significant 
value for power systems engineers and planners, not only in 
Libya but in any region grappling with similar environmental 
and operational complexities. 

The remainder of this paper is organized as follows: 
Section II surveys the relevant literature, Section III outlines 
the methodological foundations of ANN and ANFIS, Section 
IV details the data collection and model implementation, 
Section V presents and discusses the experimental results, and 
Section VI provides concluding remarks and suggestions for 
future work. 

II. LITERATURE REVIEW 

The quest for accurate load forecasting has driven a 
methodological evolution, mirroring the growing complexity 
of modern power systems. This journey from straightforward 
statistical models to sophisticated artificial intelligence 
reflects an enduring effort to capture the intricate, non-linear 
nature of electricity demand. This review charts this 
progression, critically examining the transition from 
traditional methods to computational intelligence, and 
ultimately positioning hybrid systems like ANFIS as a 
compelling solution to the limitations of their predecessors.  

A. The Statistical Foundation and Its Limitations 

In The foundation of modern load forecasting was built 

upon classical statistical and time-series methods. For 

decades, techniques such as regression analysis, exponential 

smoothing, and ARIMA models served as the industry 

standard, prized for their transparency and computational 

efficiency. These linear models proved adequate for systems 

with predictable load patterns and minimal external 

disruptions. Hippert, Pedreira, and Souza [1], for instance, 

demonstrated that ARIMA could deliver reliable forecasts 

under stable operational conditions. 

Yet, the real-world behavior of power grids is seldom linear. 

The reliance of electricity demand on a complex interplay of 

factors—most notably volatile weather, shifting economic 

activity, and human behavior—exposes the fundamental 

constraint of these approaches. This limitation becomes 

acutely visible in environments like Libya, where research by 

Ihbal and Khalleefah [3] confirmed a strong correlation 

between meteorological extremes and load, yet also revealed 

the residual errors of a multiple regression model. It became 

increasingly clear that while these models could describe 

broad trends, they struggled to adapt to the sudden, non-linear 

fluctuations that define demanding grids, thereby creating an 

imperative for more flexible modeling paradigms. 

B. The Computational Leap with Artificial Neural Networks  

The advent of accessible computational power catalyzed a 
paradigm shift toward Artificial Neural Networks (ANNs). By 
mimicking the learning processes of biological neural 
networks, ANNs offered a powerful alternative: the ability to 
discern complex, non-linear patterns directly from data 
without pre-specified mathematical relationships. This 
capability propelled them to the forefront of load forecasting 
research.. 

Their application has yielded significant successes, 
including within the regional context. Abdulwahid et al. [5], 
for example, demonstrated that an ANN model integrating 
local weather variables could effectively reduce forecasting 
error for the Western Libyan Electric Network. The field has 
since advanced with deeper architectures, as seen in the work 
of Arvanitidis et al. [6], who leveraged more complex ANN 
designs to achieve enhanced accuracy. However, this progress 
often comes with a cost; such models typically demand large, 
high-quality datasets and considerable computational 
resources, which can be prohibitive in developing regions.  

Perhaps the most enduring critique of ANNs, however, is 
their opacity. Often regarded as "black-box" models [7], they 
provide limited insight into the causal logic behind their 
predictions. This lack of interpretability can erode trust and 
hinder their integration into critical decision-making 
processes where understanding the "why" is as important as 
knowing the "what."  

C. Synthesizing Intelligence: The Hybrid Promise of ANFIS 

In response to the limitations of pure ANN models, the 
field saw the emergence of hybrid systems designed to marry 
numerical precision with logical transparency. The Adaptive 
Neuro-Fuzzy Inference System (ANFIS) stands as a 
prominent example of this synthesis. By embedding the 
learning algorithms of a neural network within the intuitive, 
rule-based framework of fuzzy logic, ANFIS creates a model 
that can both learn from historical data and express its 
predictions through human-understandable "IF-THEN" rules.  

This dual capability has proven highly effective across 
diverse forecasting challenges. Studies such as that by Oak 
and Honade [8] in the Indian power network reported 
exceptional accuracy with ANFIS, achieving an average error 
of just 1.2%. Similarly, Faraji et al. [9] highlighted its 
robustness in microgrid environments, where its inherent 
ability to manage uncertainty from renewable generation and 
erratic weather is a distinct advantage. The capacity of ANFIS 
to autonomously refine its internal parameters and rules 
positions it as a uniquely adaptable tool for the volatile and 
data-sparse conditions that often characterize developing 
power infrastructures. forecasting. 

D. Identifying the Gap: A Question of Context and 

Application 

Despite this rich global tapestry of research, a critical 
contextual gap remains. The overwhelming focus of advanced 
forecasting literature has been on the thermally temperate and 
structurally stable grids of North America and Europe [10, 
11]. While valuable, the performance of models calibrated for 
these environments cannot be directly extrapolated to regions 
facing a different set of stressors. Although broader studies in 
North Africa, such as the long-term forecasting work of 
Ammar et al. [12], have applied AI techniques, a dedicated 
investigation into short-term forecasting for the Libyan grid 
subject to its unique confluence of extreme climate and 
operational constraints is conspicuously absent. 

It is within this gap that our study situates itself. The 
authors move beyond a generic applicationof AI models to 
conduct a focused, empirical comparison of ANN and ANFIS 
within the specific and challenging context of the Western 
Libyan power grid. By leveraging a real-world, locally 
sourced dataset, this research aims to provide a definitive 
assessment of which architectural paradigm offers the most 
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accurate and reliable path toward stabilizing and optimizing 
this critical infrastructure.  

III. TYPES OF LOAD FORECASTING  

Forecasting Load forecasting is typically divided into 
three timeframes: 

 Long-term: More than one year 

 Medium-term: From a week to a year 

 Short-term: From an hour to a week 

This study focuses on short-term forecasting, which is 
essential for day-to-day grid operations. While long-term 
forecasts are useful for planning infrastructure and 
investments, they rely on assumptions about future weather 
and economic conditions that can be hard to predict 
accurately. 

you. Any footnotes appear below the table, using the 
“table footnote” style. Footnotes are indicated by superscript 
lowercase letters within the table. An example of a table can 
be seen in Table I, below. 

IV. FACTORS THAT AFFECT LOAD FORECASTING 

Many variables can influence electricity demand. These 
include: 

 The time of day, day of the week, and season 

 Weather data like temperature, humidity, wind, and 
rainfall 

 Human activities and appliance usage patterns 

 Economic trends and population growth 

Combining these factors can improve the reliability of 
forecasting models, especially when using AI-based tools. 

V. FORECASTING METHODS 

A. Artificial Neural Networks (ANN) 

ANNs are inspired by how the human brain processes 

information. In this study, a multilayer perceptron (MLP) 

with three layers: input, hidden, and output has been used. 

The input layer included six variables: temperature, humidity, 

wind speed, rainfall, actual load, and previous load. The 

output was the forecasted load for the next period. The 

architecture structure of ANN is shown in figure 1. 

 

 
Fig. 1. Architecture of ANN 

B. Adaptive Neuro-Fuzzy Inference System (ANFIS)  

ANFIS brings together fuzzy logic and neural networks. 

It uses rule-based logic (like “if temperature is high, then load 

increases”) but also learns and adjusts based on actual data. 

This makes ANFIS flexible and capable of handling 

uncertainty better than traditional methods. The simple 

structure for ANFIS is shown in figure 2. 

 

 

Fig. 2. Simple General ANFIS Structure 

 

VI. METHODOLOGY 

This section outlines the systematic framework developed 

to construct, train, and validate two distinct forecasting 

models—an Artificial Neural Network (ANN) and an 

Adaptive Neuro-Fuzzy Inference System (ANFIS)  for short-

term load prediction in the Western Libyan grid. Our 

approach emphasizes robust data handling, model 

transparency, and reproducible evaluation to ensure a 

meaningful comparison between the two techniques.  

A. Data Source and Description 

The dataset used in this study was obtained from the 

National Control Center of the General Electricity Company 

of Libya (GECOL) and covers the Western Libyan power 

grid for the year 2023. The data consist of: 

 Hourly electrical load demand (MW) 

 Meteorological variables: temperature (°C), relative 

humidity (%), wind speed (m/s), and rainfall (mm) 

A total of 8,760 hourly samples were used. All data were 

preprocessed to remove missing values and normalized prior 

to model training. 

B. Data Acquisition and Preprocessing 

The foundation of any robust forecasting model is high-
quality, relevant data. For this study, the dataset was sourced 
from the General Electricity Company of Libya (GECOL) and 
covered the entirety of the 2023 calendar year. The collected 
data was categorized into two primary types: historical hourly 
electricity load (in MW) and concurrent meteorological 
parameters (temperature, humidity, wind speed, and rainfall). 

To ensure data quality and model stability, a comprehensive 
preprocessing pipeline was implemented, the workflow of 
which is illustrated in Figure 3. 
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Fig. 3. Data Preprocessing Workflow 

 

 Data Cleaning: The dataset was examined for 
missing values or outliers. Gaps were addressed 
using linear interpolation, while anomalous data 
points were filtered based on statistical thresholds. 

 Feature Engineering: Temporal features were 
explicitly engineered to capture the cyclical nature of 
load patterns. These included Hour of the Day, Day 
of the Week, and a Binary Indicator for Weekends. 

 Normalization: All input variables were normalized 
to a [0, 1] scale using Min-Max scaling to prevent 
variables with larger numerical ranges from 
dominating the model's learning process. 

 Data Splitting: The preprocessed dataset was 
partitioned chronologically into three subsets to 
ensure a realistic evaluation. This data splitting 
strategy is conceptually shown in Figure 4. 

o Training Set (70%): Used for model 
parameter estimation. 

o Validation Set (15%): Used for 
hyperparameter tuning and early stopping. 

o Test Set (15%): Reserved for final model 
assessment on unseen data. 

 

 

Fig. 4. Data Splitting Process 

C. Forecasting Model Architectures 

1. Artificial Neural Network (ANN) Model: 

1.1 ANN Architecture 

A feedforward Multilayer Perceptron (MLP) architecture 
was selected, a workhorse in non-linear regression tasks. The 
training employed the Levenberg-Marquardt 
backpropagation algorithm, a widely used and efficient 
method for medium-sized neural networks that combines the 
speed of the Gauss-Newton method with the stability of 
gradient descent [7]. This algorithm was chosen for its rapid 
convergence and suitability for the problem scale. 

 Input Layer: Six neurons representing our key 
predictors: Temperature, Humidity, Wind Speed, 
Rainfall, Previous Hour Load (L_t-1), and Current 
Hour Load (L_t). 

 Hidden Layer: After systematic experimentation, a 
single hidden layer with 10 neurons using hyperbolic 
tangent (tanh) activation functions was configured to 
capture non-linear relationships.  

 Output Layer: A single linear neuron generating 
the predicted load for the next hour (L_t+1). 

 Training Protocol: Model training employed the 
Levenberg-Marquardt backpropagation algorithm, 
with early stopping implemented to prevent 
overfitting. 

 

 

Fig. 5. Optimized ANN Architecture (6-10-1) 

1.2 ANN Training Algorithm 

The Artificial Neural Network model was trained using the 
Levenberg–Marquardt backpropagation algorithm, which is 
widely applied for nonlinear least-squares optimization 
problems due to its fast convergence characteristics. The 
algorithm updates the network weights by minimizing the 
squared error between the actual and predicted load values. 
The weight update rule is expressed as: 

 
(1) 

where 
w represents the network weight vector, 
J is the Jacobian matrix of partial derivatives of the error 
with respect to the weights, 
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e denotes the error vector between actual and forecasted load 
values, 
μ is the damping factor controlling the transition between 
gradient descent and Gauss–Newton methods, and 
I is the identity matrix. 

2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
Model: 
The ANFIS framework was implemented to combine neural 
network adaptability with fuzzy logic interpretability. 

 FIS Generation:  The Fuzzy Inference System has 
been initialized using grid partitioning, which 
systematically creates rules by combining all 
possible input states. 

 Input Membership Functions: Each of the six 
input variables was characterized by two Gaussian 
membership functions, creating natural linguistic 
categories (e.g., 'Low' and 'High'). 

 Fuzzy Rules: The system automatically generated 
64 Takagi-Sugeno type rules, each representing a 
plausible scenario in the load-weather relationship. 

 Learning Mechanism: The hybrid learning was 
employed where: 

o Consequent parameters were optimized via 
least-squares estimation in the forward pass 

o Premise parameters were refined through 
gradient descent in the backward pass 
This dual approach enables the model to 
simultaneously learn both the rule structure 
and the optimal input-output mappings. 

  

Fig. 6. ANFIS Architecture for Load Forecasting 

Figure 6 illustrates the five-layer hybrid architecture of the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) used for 
load forecasting, showing how neural network learning is 
integrated with fuzzy logic reasoning.,  

D. Implementation and Evaluation Framework 

1. Artificial Neural Network (ANN) Model: 
All modeling was conducted in MATLAB R2023a, 
leveraging its specialized toolboxes for neural networks and 
fuzzy logic. To ensure a rigorous comparison, both models 
were evaluated on the held-out test set using three 
complementary metrics: 

 Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1                    (2) 

Where 

𝐴𝑡 is the actual load at time t, 

𝐹𝑡 is the forecasted load at time t, and 

𝑛 is the total number of observations. 

Providing an intuitive measure of relative forecasting 
accuracy. 

 Root Mean Square Error (RMSE): 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝐴𝑡 −  𝐹𝑡)2𝑛

𝑡=1                 (3) 

 
Emphasizing larger errors that are particularly critical in 
power system operations. 

 Coefficient of Determination (R²): 
Quantifying how well the models explain the 
variance in actual load patterns. 

This methodological framework provides a solid 
foundation for objectively comparing the forecasting 
capabilities of ANN and ANFIS in the challenging context of 
the Libyan power grid. 

VII. RESULTS AND DISCUSSIONS 

This section provides an in-depth evaluation of the 
forecasting performance achieved by the Artificial Neural 
Network (ANN) and the Adaptive Neuro-Fuzzy Inference 
System (ANFIS) models. The analysis integrates quantitative 
performance indicators with visual comparison techniques to 
offer a clear and comprehensive understanding of how each 
model behaves in predicting short-term electrical load in the 
Western Libyan grid. By examining both numerical accuracy 
and graphical patterns, the assessment highlights the relative 
strengths and potential limitations of each modelling 
approach.   

A. Performance of the ANN Model 

The ANN model demonstrated a substantial capability to 
learn the underlying patterns present in the historical load 
dataset. As illustrated in Figure 7, the Mean Squared Error 
(MSE) exhibited a rapid decline during the early training 
stages and subsequently converged, with the optimal 
validation performance attained at epoch 10. The final training 
MSE reached an exceptionally low value of 5.43×10−25, 
reflecting a highly accurate fit to the training data. 
Furthermore, the model achieved strong coefficients of 
determination across all data partitions 0.985 for the training 
set, 0.940 for the validation set, and 0.943 for the testing set—
resulting in an overall R2 of 0.969. As shown in Figure 8, these 
regression outcomes indicate that the ANN effectively 
captured both the linear and nonlinear characteristics inherent 
in the load-demand profile. 

However, a closer inspection of the learning behavior 
suggests the presence of overfitting. The extremely low 
training MSE, together with the noticeable divergence 
between the training and validation curves in Figure 7, 
indicates that the model may have begun to memorize noise 
or minor fluctuations specific to the training data. This 
behavior limits its ability to generalize with complete 
reliability to unseen samples. The impact of this limitation is 
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further evident in the comparatively higher error values 
observed on the independent testing subset, as presented in the 
subsequent comparative performance analysis. 

 

Fig. 7. ANN Training Performanc 

As shown in Figure. 8, these regression outcomes indicate 

that the ANN effectively captured both the linear and 

nonlinear characteristics inherent in the load-demand 

profile. 

 

 

Fig. 8. Regression Analysis for ANN Model 

B. Comparative Analysis: ANN vs. ANFIS 

The primary aim of this study was to conduct a systematic 

and fair comparison between the two AI-based forecasting 

approaches. The performance metrics obtained from the held-

out test set reveal a clear and substantial difference between 

the models, as summarized in Table I.. 

TABLE I.  COMPARISON OF ACTUAL, ANN, AND ANFIS 

FORECASTED LOAD DATA 

 

Model 
MAPE 

(%) 

RMSE 

(MW) 
R² 

ANN 8.37 42.8 0.943 

ANFIS 0.50 3.1 0.999 

 

 

 

 

The ANFIS model achieved a MAPE of just 0.50%, 

representing an improvement of more than an order of 

magnitude over the ANN, which recorded a MAPE of 8.37%. 

This difference is further reflected in the RMSE values: the 

ANFIS model produced an error of only 3.1 MW, compared 

with 42.8 MW for the ANN. The near-unity R² value of 0.999 

indicates that ANFIS captures virtually all the variance in the 

actual load data, demonstrating exceptional predictive 

capability. 

These numerical results are strongly supported by the visual 

comparison presented in Figure 9. The time-series plot shows 

that the ANFIS-generated load trajectory closely tracks the 

actual measurements across the entire forecasting horizon, 

including during periods of abrupt change and peak demand 

where accurate prediction is particularly essential for 

maintaining grid reliability. Conversely, the ANN predictions 

display noticeable deviations from the true load profile, 

especially in high-volatility regions. This pattern underscores 

the limitations of the ANN in capturing rapid dynamic 

behavior and highlights the superior generalization ability of 

the ANFIS model. 

 

Fig. 9. Time-Series Comparison of ANN and ANFIS Predictions vs. 
Actual Load 

C. Discussion on Model Superiority  

The ANFIS model delivered remarkably high predictive 

accuracy, achieving an R² of 0.999, a MAPE of 0.50%, and 

an RMSE of 3.1 MW on the independent test set. Although 

such a near-perfect R² is uncommon in real-world forecasting 

studies, in this case it reflects the model’s strong ability to 

capture the dominant autoregressive structure inherent in the 

hourly load profile. This level of performance is largely 

enabled by ANFIS’s hybrid architecture: the model 

effectively learns sequential load dependencies (Lₜ and Lₜ₋₁) 

while simultaneously accommodating the non-linear impacts 

of meteorological factors through its adaptive fuzzy inference 

mechanism. The sub-1% MAPE underscores the practical 

significance of these results, positioning ANFIS as a highly 

reliable and operationally precise tool for short-term load 

forecasting. 

The pronounced performance gap between the two models 

can be traced to several structural advantages of the ANFIS 

framework: 

1. Effective Representation of Non-linearity and 

Uncertainty. 
The fuzzy logic component allows ANFIS to express rule-

based relationships between weather variables and load 

responses—relationships that are often nonlinear, context-

dependent, and difficult for a conventional ANN to learn. For 

instance, qualitative patterns such as “IF temperature is very 

high, THEN load increase is significant” are naturally 

encoded in the fuzzy rule base. This makes ANFIS 
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particularly well-suited to the climate-driven load variability 

observed in the Western Libyan grid. 

2. Hybrid Learning Framework Reduces Overfitting. 
Unlike the ANN, whose flexibility led to over-specialization 

on the training data, the ANFIS structure constrains the 

learning process in a beneficial way. By jointly optimizing 

membership function parameters and linear consequents, the 

model maintains a balance between adaptability and 

structure. This results in a predictor that generalizes 

effectively, as evidenced by its minimal performance 

degradation from the training to the testing phase. 

3. Interpretability as a Practical Operational 

Advantage. 
In addition to its superior accuracy, ANFIS provides 

transparency through interpretable fuzzy rules. These rules 

offer direct insight into the factors driving load fluctuations, 

helping grid operators understand why certain forecasts are 

produced. This interpretability is valuable in operational 

settings, where decision-makers must rely on models that 

both perform well and offer explanations—an area where 

traditional ANN approaches, treated as “black boxes,” often 

fall short. 

In summary, while the ANN model demonstrated 

competent predictive performance, ANFIS clearly 

outperformed it in accuracy and generalization. The hybrid 

neuro-fuzzy design is well-matched to the complex, weather-

sensitive load dynamics of the Western Libyan grid. The 

significant reduction in forecasting error achieved by ANFIS 

translates into meaningful operational benefits, including 

more efficient generation scheduling, enhanced reliability, 

and reduced operational costs. 

VIII. CONCLUSION 

This study presented a comprehensive comparative 
evaluation of two widely used artificial intelligence 
techniques,Artificial Neural Networks (ANN) and the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) for short-
term load forecasting within the Western Libyan power grid. 
Using a detailed hourly dataset from GECOL for the year 
2023, both models were developed, trained, and rigorously 
tested. The results show a clear and decisive advantage in 
favor of ANFIS. 

The ANFIS model delivered outstanding predictive 
performance, achieving a Mean Absolute Percentage Error 
(MAPE) of 0.50%, a Root Mean Square Error (RMSE) of 3.1 
MW, and an exceptionally high R² value of 0.999 on the 
independent test set. In contrast, the ANN model recorded a 
MAPE of 8.37% and an RMSE of 42.8 MW. This substantial 
discrepancy exceeding an order of magnitude in MAPE 
underscores ANFIS’s markedly superior capacity to capture 
the complex nonlinear and weather-driven dynamics that 
shape load behavior in the Western Libyan grid.. 

ANFIS’s success stems from its hybrid structure, which 
combines the adaptive learning capabilities of neural networks 
with the interpretability and uncertainty-handling strengths of 
fuzzy logic. This synergy enables robust generalization, 
mitigates overfitting, and yields transparent, rule-based 
insights into the primary drivers of load variation. Such 
interpretability is especially valuable in operational settings, 
where grid operators must understand and trust the logic 

behind forecasts. Compared with the black-box nature of 
ANN models, ANFIS offers a more balanced and 
operationally useful forecasting framework, particularly in 
regions where climate variability and infrastructure 
constraints add to the forecasting challenge. 

Future research should expand the temporal horizon of the 
dataset to incorporate multi-year seasonal trends, integrate 
real-time grid conditions and renewable generation forecasts, 
and evaluate the performance of the ANFIS model in a live 
operational environment. Collectively, these steps would 
strengthen the model’s adaptability and confirm its practical 
value for on-the-ground grid management. Overall, this study 
demonstrates that hybrid neuro-fuzzy systems represent a 
powerful and reliable approach for short-term load forecasting 
in complex and uncertain power networks. 
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