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Abstract— The stability and economic efficiency of modern
power systems rely profoundly on accurate short-term load
forecasting (STLF). This investigation presents a comparative
assessment of two artificial intelligence methodologies,Artificial
Neural Networks (ANN) and the Adaptive Neuro-Fuzzy
Inference System (ANFIS) for STLF within the Western Libyan
power grid. This network operates under considerable strain
from extreme climatic conditions and infrastructural
limitations, which introduce pronounced volatility and non-
linearity into load patterns. Leveraging a comprehensive 2023
dataset from the General Electricity Company of Libya
(GECOL), which integrates historical load data with critical
meteorological variables, two models in MATLAB were
developed and simulated. The findings reveal a decisive
superiority of the ANFIS model, which achieved a remarkable
average forecasting error of just 0.50%, starkly contrasting with
the ANN model's error of 8.37%. This performance is attributed
to the ANFIS architecture, which effectively marries the
adaptive learning capabilities of neural networks with the
transparent, rule-based reasoning of fuzzy logic. This synergy
renders ANFIS an exceptionally accurate tool for short-term
load forecasting in complex and uncertain environments like
Libya.
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l. INTRODUCTION

The relentless balancing of electricity supply with
consumer demand forms the cornerstone of a secure and
efficient power grid. At the heart of this endeavor lies short-
term load forecasting (STLF), a discipline dedicated to
predicting load from a few hours to a week ahead. Its accuracy
is not merely an operational convenience but a critical
necessity, directly enabling effective unit commitment,
economic dispatch, and the prevention of system instability

[1].

Yet, the pursuit of forecasting precision is far from
universal. In many developing nations, power grids are tasked
with functioning under a unique set of adversities. The
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Western Libyan grid exemplifies this challenge, navigating a
landscape of aging infrastructure, rapidly escalating demand,
and a climate characterized by extreme heat and frequent
sandstorms. These elements conspire to create highly dynamic
and non-linear load profiles that consistently confound
traditional forecasting techniques, such as regression analysis
and ARIMA models [2, 3]. As these conventional methods
falter, the imperative for more sophisticated, adaptive
modeling approaches becomes undeniable.

The emergence of Artificial Intelligence (Al) has provided
a powerful arsenal for this very purpose. Artificial Neural
Networks (ANNS), inspired by biological cognitive processes,
have demonstrated a formidable capacity to discern intricate,
non-linear patterns directly from historical data, establishing
themselves as a leading solution for STLF [4, 5]. Their
principal limitation, however, is their notorious "black box"
nature; while they often yield accurate predictions, the
underlying logic remains opaque, hindering interpretability
and trust. Seeking to reconcile high performance with
transparency, researchers developed hybrid paradigms like the
Adaptive Neuro-Fuzzy Inference System (ANFIS). This
framework elegantly integrates the computational learning
strength of neural networks with the intuitive, linguistic rule-
structure of fuzzy logic, offering a model that can both learn
from data and explain its reasoning in human-understandable
terms [6, 7].

While the global literature on Al-based STLF is extensive,
a focused inquiry into its application within the distinct and
demanding context of Libya remains notably scarce. Although
preliminary studies have explored ANNSs in the region [8], a
rigorous, comparative analysis pitting them against a hybrid
model like ANFIS has been absent. This gap leaves a critical
question unanswered: which Al architecture is truly most
capable of managing the specific volatilities of the Libyan
grid?

This study directly addresses that question. A systematic
empirical comparison of ANN and ANFIS models was
conducted for STLF, utilizing a robust dataset from GECOL.
Our objective is to move beyond theoretical appeal and


https://www.facebook.com/MarwanForjani?__cft__%5b0%5d=AZXjSQGUwORyM85KwhTCiZ_OBoPnCcpvkMFrRLpXzRYFFIRsTUSsQ90EgEbonBorZCJWHmn5UZLs6W4vo08kSL28dz8UTEShsLtYuArv1GM4dfhiK8QkWy9oOnqZYoBeK8PPTs7KQd05Gnpn-jX0wZUXB_IvXOlim5eeyAQ_sdrWvHoc0n3AHMvP3D13Z3lXDiw&__tn__=-%5dC%2CP-R
mailto:eltawilammar1003@yahoo.com

Academy journal for Basic and Applied Sciences (AJBAS)

determine, through concrete performance metrics, the most
reliable forecasting tool for enhancing grid operability in
Libya. The conclusions drawn are expected to hold significant
value for power systems engineers and planners, not only in
Libya but in any region grappling with similar environmental
and operational complexities.

The remainder of this paper is organized as follows:;
Section 11 surveys the relevant literature, Section 1l outlines
the methodological foundations of ANN and ANFIS, Section
IV details the data collection and model implementation,
Section V presents and discusses the experimental results, and
Section VI provides concluding remarks and suggestions for
future work.

Il.  LITERATURE REVIEW

The quest for accurate load forecasting has driven a
methodological evolution, mirroring the growing complexity
of modern power systems. This journey from straightforward
statistical models to sophisticated artificial intelligence
reflects an enduring effort to capture the intricate, non-linear
nature of electricity demand. This review charts this
progression, critically examining the transition from
traditional methods to computational intelligence, and
ultimately positioning hybrid systems like ANFIS as a
compelling solution to the limitations of their predecessors.

A. The Statistical Foundation and Its Limitations

In The foundation of modern load forecasting was built
upon classical statistical and time-series methods. For
decades, techniques such as regression analysis, exponential
smoothing, and ARIMA models served as the industry
standard, prized for their transparency and computational
efficiency. These linear models proved adequate for systems
with predictable load patterns and minimal external
disruptions. Hippert, Pedreira, and Souza [1], for instance,
demonstrated that ARIMA could deliver reliable forecasts
under stable operational conditions.

Yet, the real-world behavior of power grids is seldom linear.
The reliance of electricity demand on a complex interplay of
factors—most notably volatile weather, shifting economic
activity, and human behavior—exposes the fundamental
constraint of these approaches. This limitation becomes
acutely visible in environments like Libya, where research by
Ihbal and Khalleefah [3] confirmed a strong correlation
between meteorological extremes and load, yet also revealed
the residual errors of a multiple regression model. It became
increasingly clear that while these models could describe
broad trends, they struggled to adapt to the sudden, non-linear
fluctuations that define demanding grids, thereby creating an
imperative for more flexible modeling paradigms.

B. The Computational Leap with Artificial Neural Networks

The advent of accessible computational power catalyzed a
paradigm shift toward Artificial Neural Networks (ANNS). By
mimicking the learning processes of biological neural
networks, ANNs offered a powerful alternative: the ability to
discern complex, non-linear patterns directly from data
without pre-specified mathematical relationships. This
capability propelled them to the forefront of load forecasting
research..
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Their application has yielded significant successes,
including within the regional context. Abdulwahid et al. [5],
for example, demonstrated that an ANN model integrating
local weather variables could effectively reduce forecasting
error for the Western Libyan Electric Network. The field has
since advanced with deeper architectures, as seen in the work
of Arvanitidis et al. [6], who leveraged more complex ANN
designs to achieve enhanced accuracy. However, this progress
often comes with a cost; such models typically demand large,
high-quality datasets and considerable computational
resources, which can be prohibitive in developing regions.

Perhaps the most enduring critique of ANNS, however, is
their opacity. Often regarded as "black-box" models [7], they
provide limited insight into the causal logic behind their
predictions. This lack of interpretability can erode trust and
hinder their integration into critical decision-making
processes where understanding the "why" is as important as
knowing the "what."

C. Synthesizing Intelligence: The Hybrid Promise of ANFIS

In response to the limitations of pure ANN models, the
field saw the emergence of hybrid systems designed to marry
numerical precision with logical transparency. The Adaptive
Neuro-Fuzzy Inference System (ANFIS) stands as a
prominent example of this synthesis. By embedding the
learning algorithms of a neural network within the intuitive,
rule-based framework of fuzzy logic, ANFIS creates a model
that can both learn from historical data and express its
predictions through human-understandable "IF-THEN" rules.

This dual capability has proven highly effective across
diverse forecasting challenges. Studies such as that by Oak
and Honade [8] in the Indian power network reported
exceptional accuracy with ANFIS, achieving an average error
of just 1.2%. Similarly, Faraji et al. [9] highlighted its
robustness in microgrid environments, where its inherent
ability to manage uncertainty from renewable generation and
erratic weather is a distinct advantage. The capacity of ANFIS
to autonomously refine its internal parameters and rules
positions it as a uniquely adaptable tool for the volatile and
data-sparse conditions that often characterize developing
power infrastructures. forecasting.

D. Identifying the Gap: A Question of Context and
Application

Despite this rich global tapestry of research, a critical
contextual gap remains. The overwhelming focus of advanced
forecasting literature has been on the thermally temperate and
structurally stable grids of North America and Europe [10,
11]. While valuable, the performance of models calibrated for
these environments cannot be directly extrapolated to regions
facing a different set of stressors. Although broader studies in
North Africa, such as the long-term forecasting work of
Ammar et al. [12], have applied Al techniques, a dedicated
investigation into short-term forecasting for the Libyan grid
subject to its unique confluence of extreme climate and
operational constraints is conspicuously absent.

It is within this gap that our study situates itself. The
authors move beyond a generic applicationof Al models to
conduct a focused, empirical comparison of ANN and ANFIS
within the specific and challenging context of the Western
Libyan power grid. By leveraging a real-world, locally
sourced dataset, this research aims to provide a definitive
assessment of which architectural paradigm offers the most
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accurate and reliable path toward stabilizing and optimizing
this critical infrastructure.

I1l.  TYPES OF LOAD FORECASTING

Forecasting Load forecasting is typically divided into
three timeframes:

e Long-term: More than one year
o Medium-term: From a week to a year
e Short-term: From an hour to a week

This study focuses on short-term forecasting, which is
essential for day-to-day grid operations. While long-term
forecasts are useful for planning infrastructure and
investments, they rely on assumptions about future weather
and economic conditions that can be hard to predict
accurately.

you. Any footnotes appear below the table, using the
“table footnote” style. Footnotes are indicated by superscript
lowercase letters within the table. An example of a table can
be seen in Table I, below.

IV. FACTORS THAT AFFECT LOAD FORECASTING
Many variables can influence electricity demand. These
include:
e The time of day, day of the week, and season

o  Weather data like temperature, humidity, wind, and
rainfall

e Human activities and appliance usage patterns
e  Economic trends and population growth

Combining these factors can improve the reliability of
forecasting models, especially when using Al-based tools.

V. FORECASTING METHODS
A. Artificial Neural Networks (ANN)

ANNSs are inspired by how the human brain processes
information. In this study, a multilayer perceptron (MLP)
with three layers: input, hidden, and output has been used.
The input layer included six variables: temperature, humidity,
wind speed, rainfall, actual load, and previous load. The
output was the forecasted load for the next period. The
architecture structure of ANN is shown in figure 1.

Time (x2)

Transfer function

Next one — day load (X3)

Previous day load (x4)

OUTPUT LAYER

HIDDEN LAYER

INPUT LAYER

Fig. 1. Architecture of ANN
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B. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS brings together fuzzy logic and neural networks.
It uses rule-based logic (like “if temperature is high, then load
increases”) but also learns and adjusts based on actual data.
This makes ANFIS flexible and capable of handling
uncertainty better than traditional methods. The simple
structure for ANFIS is shown in figure 2.

Temperature l::)-

Time [

Previous Day [y >

sIajaweleg yndu|

(ndyng) jadiey

Fig. 2. Simple General ANFIS Structure

VI. METHODOLOGY

This section outlines the systematic framework developed
to construct, train, and validate two distinct forecasting
models—an Artificial Neural Network (ANN) and an
Adaptive Neuro-Fuzzy Inference System (ANFIS) for short-
term load prediction in the Western Libyan grid. Our
approach emphasizes robust data handling, model
transparency, and reproducible evaluation to ensure a
meaningful comparison between the two techniques.

A. Data Source and Description

The dataset used in this study was obtained from the
National Control Center of the General Electricity Company
of Libya (GECOL) and covers the Western Libyan power
grid for the year 2023. The data consist of:

e Hourly electrical load demand (MW)

e Meteorological variables: temperature (°C), relative
humidity (%), wind speed (m/s), and rainfall (mm)
A total of 8,760 hourly samples were used. All data were
preprocessed to remove missing values and normalized prior
to model training.

B. Data Acquisition and Preprocessing

The foundation of any robust forecasting model is high-
quality, relevant data. For this study, the dataset was sourced
from the General Electricity Company of Libya (GECOL) and
covered the entirety of the 2023 calendar year. The collected
data was categorized into two primary types: historical hourly
electricity load (in MW) and concurrent meteorological
parameters (temperature, humidity, wind speed, and rainfall).

To ensure data quality and model stability, a comprehensive
preprocessing pipeline was implemented, the workflow of
which is illustrated in Figure 3.
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Fig. 3. Data Preprocessing Workflow

e Data Cleaning: The dataset was examined for
missing values or outliers. Gaps were addressed
using linear interpolation, while anomalous data
points were filtered based on statistical thresholds.

e Feature Engineering: Temporal features were
explicitly engineered to capture the cyclical nature of
load patterns. These included Hour of the Day, Day
of the Week, and a Binary Indicator for Weekends.

o Normalization: All input variables were normalized
to a [0, 1] scale using Min-Max scaling to prevent
variables with larger numerical ranges from
dominating the model's learning process.

o Data Splitting: The preprocessed dataset was
partitioned chronologically into three subsets to
ensure a realistic evaluation. This data splitting
strategy is conceptually shown in Figure 4.

o Training Set (70%): Used for model
parameter estimation.

o Validation  Set  (15%): Used  for
hyperparameter tuning and early stopping.

o Test Set (15%): Reserved for final model
assessment on unseen data.

Dataset j

: , |

Training Validation Testing
Data Data Data
70% 15% 15%

Fig. 4. Data Splitting Process
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C. Forecasting Model Architectures
1. Artificial Neural Network (ANN) Model:

1.1 ANN Architecture

A feedforward Multilayer Perceptron (MLP) architecture
was selected, a workhorse in non-linear regression tasks. The
training employed the Levenberg-Marquardt
backpropagation algorithm, a widely used and efficient
method for medium-sized neural networks that combines the
speed of the Gauss-Newton method with the stability of
gradient descent [7]. This algorithm was chosen for its rapid
convergence and suitability for the problem scale.

e Input Layer: Six neurons representing our key
predictors: Temperature, Humidity, Wind Speed,
Rainfall, Previous Hour Load (L_t-1), and Current
Hour Load (L_t).

e Hidden Layer: After systematic experimentation, a
single hidden layer with 10 neurons using hyperbolic
tangent (tanh) activation functions was configured to
capture non-linear relationships.

e Output Layer: A single linear neuron generating
the predicted load for the next hour (L_t+1).

e Training Protocol: Model training employed the
Levenberg-Marquardt backpropagation algorithm,
with early stopping implemented to prevent
overfitting.

Optimized ANN Architecture (6-10-1)

Temperature (°C)

Humidity (%)

Wind Speed (km/h) Forecasted Load

v«.,”@@"‘\ (Lerr) (VW)

RS2

A
<\

el .
V.' '
Input Data /

4 Rainfall (mm)
(Normalized)

Prevojus Hour Load Linear

(L IMW)

Current Hour Load
(Ly(MwW)

Input Layer

Hidden Layer

Output Layer

Fig. 5.
1.2 ANN Training Algorithm

The Artificial Neural Network model was trained using the
Levenberg—Marquardt backpropagation algorithm, which is
widely applied for nonlinear least-squares optimization
problems due to its fast convergence characteristics. The
algorithm updates the network weights by minimizing the
squared error between the actual and predicted load values.
The weight update rule is expressed as:

Optimized ANN Architecture (6-10-1)

Wil = Wi — (JTJ + ]J,I)_IJTQ @
where

w represents the network weight vector,

J is the Jacobian matrix of partial derivatives of the error
with respect to the weights,
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e denotes the error vector between actual and forecasted load
values,

u is the damping factor controlling the transition between
gradient descent and Gauss—Newton methods, and

| is the identity matrix.

2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
Model:

The ANFIS framework was implemented to combine neural
network adaptability with fuzzy logic interpretability.

e FIS Generation: The Fuzzy Inference System has
been initialized using grid partitioning, which
systematically creates rules by combining all
possible input states.

e Input Membership Functions: Each of the six
input variables was characterized by two Gaussian
membership functions, creating natural linguistic
categories (e.g., 'Low' and 'High").

e Fuzzy Rules: The system automatically generated
64 Takagi-Sugeno type rules, each representing a
plausible scenario in the load-weather relationship.

e Learning Mechanism: The hybrid learning was
employed where:

o Consequent parameters were optimized via
least-squares estimation in the forward pass

o Premise parameters were refined through
gradient descent in the backward pass
This dual approach enables the model to
simultaneously learn both the rule structure
and the optimal input-output mappings.

Input Layer T
yer Rayer
J
Temperature /\ HA(X) =1 w,
Low
Humidity N P
[\ K
Figh
Wind Speed @ )
,.’/\ P\ | Forécuted
/ ; 3
Rainfall Man - i
N wWi=wfi
Previous Hour 1\
Cosd k) b Consequent

Current Hour - Layer

Load (Li) ‘

Rule Layer

Fi der Takagi-Sug: Fuzzy System
6 inputs with 2 MFs each

64 automatically generated rules

Hybrid learning algorithm

Single crisp load forecast value

Forward Pass Least-Sq d
optimizes consequent parameters (p, q,r..)

Backward Pass Backpropagation
tunes premise parameters (Gaussian MFs)

Converting crisp npornies to opeellish convets

Fig. 6. ANFIS Architecture for Load Forecasting

Figure 6 illustrates the five-layer hybrid architecture of the
Adaptive Neuro-Fuzzy Inference System (ANFIS) used for
load forecasting, showing how neural network learning is
integrated with fuzzy logic reasoning.,

D. Implementation and Evaluation Framework

1. Artificial Neural Network (ANN) Model:
All modeling was conducted in MATLAB R2023a,
leveraging its specialized toolboxes for neural networks and
fuzzy logic. To ensure a rigorous comparison, both models
were evaluated on the held-out test set using three
complementary metrics:

e Mean Absolute Percentage Error (MAPE):

MAPE = 100% n AtA—tFt @)

n
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Where

A, is the actual load at time t,

F, is the forecasted load at time t, and
n is the total number of observations.

Providing an intuitive measure of relative forecasting
accuracy.

e Root Mean Square Error (RMSE):

RMSE = \/izzzl(At ~ F)? 3)

Emphasizing larger errors that are particularly critical in
power system operations.

e Coefficient of Determination (R?):
Quantifying how well the models explain the
variance in actual load patterns.

This methodological framework provides a solid
foundation for objectively comparing the forecasting
capabilities of ANN and ANFIS in the challenging context of
the Libyan power grid.

VII. RESULTS AND DISCUSSIONS

This section provides an in-depth evaluation of the
forecasting performance achieved by the Artificial Neural
Network (ANN) and the Adaptive Neuro-Fuzzy Inference
System (ANFIS) models. The analysis integrates quantitative
performance indicators with visual comparison techniques to
offer a clear and comprehensive understanding of how each
model behaves in predicting short-term electrical load in the
Western Libyan grid. By examining both numerical accuracy
and graphical patterns, the assessment highlights the relative
strengths and potential limitations of each modelling
approach.

A. Performance of the ANN Model

The ANN model demonstrated a substantial capability to
learn the underlying patterns present in the historical load
dataset. As illustrated in Figure 7, the Mean Squared Error
(MSE) exhibited a rapid decline during the early training
stages and subsequently converged, with the optimal
validation performance attained at epoch 10. The final training
MSE reached an exceptionally low value of 5.43x107%,
reflecting a highly accurate fit to the training data.
Furthermore, the model achieved strong coefficients of
determination across all data partitions 0.985 for the training
set, 0.940 for the validation set, and 0.943 for the testing set—
resulting in an overall R? of 0.969. As shown in Figure 8, these
regression outcomes indicate that the ANN effectively
captured both the linear and nonlinear characteristics inherent
in the load-demand profile.

However, a closer inspection of the learning behavior
suggests the presence of overfitting. The extremely low
training MSE, together with the noticeable divergence
between the training and validation curves in Figure 7,
indicates that the model may have begun to memorize noise
or minor fluctuations specific to the training data. This
behavior limits its ability to generalize with complete
reliability to unseen samples. The impact of this limitation is
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further evident in the comparatively higher error values
observed on the independent testing subset, as presented in the
subsequent comparative performance analysis.

ANN Model Performance

—— Training

Validatior
Test

10714
Best Validation

Mran Sqearcd Error

10724

0 5 10 15 20
Epoch

Fig. 7. ANN Training Performanc

As shown in Figure. 8, these regression outcomes indicate
that the ANN effectively captured both the linear and
nonlinear characteristics inherent in the load-demand
profile.

Regression Plot for ANN Model
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Fig. 8. Regression Analysis for ANN Model

B. Comparative Analysis: ANN vs. ANFIS

The primary aim of this study was to conduct a systematic
and fair comparison between the two Al-based forecasting
approaches. The performance metrics obtained from the held-
out test set reveal a clear and substantial difference between
the models, as summarized in Table I..

TABLE I. COMPARISON OF ACTUAL, ANN, AND ANFIS
FORECASTED LOAD DATA
Model M(';SE F(QI\I>IAVSVI)E R?
ANN 8.37 42.8 0.943
ANFIS 0.50 31 0.999

The ANFIS model achieved a MAPE of just 0.50%,
representing an improvement of more than an order of
magnitude over the ANN, which recorded a MAPE of 8.37%.
This difference is further reflected in the RMSE values: the
ANFIS model produced an error of only 3.1 MW, compared
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with 42.8 MW for the ANN. The near-unity R2 value of 0.999
indicates that ANFIS captures virtually all the variance in the
actual load data, demonstrating exceptional predictive
capability.

These numerical results are strongly supported by the visual
comparison presented in Figure 9. The time-series plot shows
that the ANFIS-generated load trajectory closely tracks the
actual measurements across the entire forecasting horizon,
including during periods of abrupt change and peak demand
where accurate prediction is particularly essential for
maintaining grid reliability. Conversely, the ANN predictions
display noticeable deviations from the true load profile,
especially in high-volatility regions. This pattern underscores
the limitations of the ANN in capturing rapid dynamic
behavior and highlights the superior generalization ability of
the ANFIS model.

950
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El \ l

1 *
= 1 | ¥
< Boo 1 t {\

650

[} —— Actual Load
ANN Forecast
-+ ANFIS Forecast

0 25 50 75 100 125 150 17
Hour

Fig. 9. Time-Series Comparison of ANN and ANFIS Predictions vs.
Actual Load

C. Discussion on Model Superiority

The ANFIS model delivered remarkably high predictive
accuracy, achieving an Rz of 0.999, a MAPE of 0.50%, and
an RMSE of 3.1 MW on the independent test set. Although
such a near-perfect R2 is uncommon in real-world forecasting
studies, in this case it reflects the model’s strong ability to
capture the dominant autoregressive structure inherent in the
hourly load profile. This level of performance is largely
enabled by ANFIS’s hybrid architecture: the model
effectively learns sequential load dependencies (L and L)
while simultaneously accommaodating the non-linear impacts
of meteorological factors through its adaptive fuzzy inference
mechanism. The sub-1% MAPE underscores the practical
significance of these results, positioning ANFIS as a highly
reliable and operationally precise tool for short-term load
forecasting.

The pronounced performance gap between the two models
can be traced to several structural advantages of the ANFIS
framework:

1. Effective Representation of Non-linearity and
Uncertainty.
The fuzzy logic component allows ANFIS to express rule-
based relationships between weather variables and load
responses—relationships that are often nonlinear, context-
dependent, and difficult for a conventional ANN to learn. For
instance, qualitative patterns such as “IF temperature is very
high, THEN load increase is significant” are naturally
encoded in the fuzzy rule base. This makes ANFIS
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particularly well-suited to the climate-driven load variability
observed in the Western Libyan grid.

2. Hybrid Learning Framework Reduces Overfitting.
Unlike the ANN, whose flexibility led to over-specialization
on the training data, the ANFIS structure constrains the
learning process in a beneficial way. By jointly optimizing
membership function parameters and linear consequents, the
model maintains a balance between adaptability and
structure. This results in a predictor that generalizes
effectively, as evidenced by its minimal performance
degradation from the training to the testing phase.

3. Interpretability as a Practical
Advantage.

In addition to its superior accuracy, ANFIS provides
transparency through interpretable fuzzy rules. These rules
offer direct insight into the factors driving load fluctuations,
helping grid operators understand why certain forecasts are
produced. This interpretability is valuable in operational
settings, where decision-makers must rely on models that
both perform well and offer explanations—an area where
traditional ANN approaches, treated as “black boxes,” often
fall short.

Operational

In summary, while the ANN model demonstrated
competent  predictive  performance, ANFIS clearly
outperformed it in accuracy and generalization. The hybrid
neuro-fuzzy design is well-matched to the complex, weather-
sensitive load dynamics of the Western Libyan grid. The
significant reduction in forecasting error achieved by ANFIS
translates into meaningful operational benefits, including
more efficient generation scheduling, enhanced reliability,
and reduced operational costs.

VIIl. CONCLUSION

This study presented a comprehensive comparative
evaluation of two widely used artificial intelligence
techniques,Artificial Neural Networks (ANN) and the
Adaptive Neuro-Fuzzy Inference System (ANFIS) for short-
term load forecasting within the Western Libyan power grid.
Using a detailed hourly dataset from GECOL for the year
2023, both models were developed, trained, and rigorously
tested. The results show a clear and decisive advantage in
favor of ANFIS.

The ANFIS model delivered outstanding predictive
performance, achieving a Mean Absolute Percentage Error
(MAPE) of 0.50%, a Root Mean Square Error (RMSE) of 3.1
MW, and an exceptionally high R? value of 0.999 on the
independent test set. In contrast, the ANN model recorded a
MAPE of 8.37% and an RMSE of 42.8 MW. This substantial
discrepancy exceeding an order of magnitude in MAPE
underscores ANFIS’s markedly superior capacity to capture
the complex nonlinear and weather-driven dynamics that
shape load behavior in the Western Libyan grid..

ANFIS’s success stems from its hybrid structure, which
combines the adaptive learning capabilities of neural networks
with the interpretability and uncertainty-handling strengths of
fuzzy logic. This synergy enables robust generalization,
mitigates overfitting, and yields transparent, rule-based
insights into the primary drivers of load variation. Such
interpretability is especially valuable in operational settings,
where grid operators must understand and trust the logic
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behind forecasts. Compared with the black-box nature of
ANN models, ANFIS offers a more balanced and
operationally useful forecasting framework, particularly in
regions where climate variability and infrastructure
constraints add to the forecasting challenge.

Future research should expand the temporal horizon of the
dataset to incorporate multi-year seasonal trends, integrate
real-time grid conditions and renewable generation forecasts,
and evaluate the performance of the ANFIS model in a live
operational environment. Collectively, these steps would
strengthen the model’s adaptability and confirm its practical
value for on-the-ground grid management. Overall, this study
demonstrates that hybrid neuro-fuzzy systems represent a
powerful and reliable approach for short-term load forecasting
in complex and uncertain power networks.
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