O

—_—
FaUIFT ]

Academy journal for Basic and Applied Sciences (AJBAS)

Volume 7 issue 2, 2025..

Artificial Immune System for Fuzzy Backpropagation
Neural Networks Optimization

Fathi Gasir
School of Applied Sciences and Engineering
The Libyan Academy for Postgraduate Studies
Tripoli, Libya
Fathi.Elgasir@Academy.edu.ly

Hiefa Alajail
Faculty of Education
Misurata University
Misurata, Libya
H Alajail@edu.misuratau.edu.ly

Abstract— Fuzzy Neural Networks (FNNs) enhance
conventional Artificial Neural Networks (ANNs) by
incorporating fuzzy membership functions, which enable the
handling of uncertainty, ambiguity, and imprecise information.
While Fuzzy Backpropagation Neural Networks (FBNNs)
improve classification performance across noisy datasets, the
effectiveness of fuzzification heavily depends on the proper
tuning of membership function parameters—typically
optimized manually. This paper presents a novel Artificial
Immune System framework for optimizing Fuzzy
Backpropagation Neural Networks used in the classification of
biological image data. The approach integrates a fuzzy min—
max fuzzification layer with a feed-forward backpropagation
network and applies an optimization version of an Artificial
Immune Network model, derived from opt-aiNet, to tune
trapezoidal membership functions. Experimental results
confirm that the proposed immune-driven optimization is an
effective technique for enhancing FBNN robustness and
generalization..
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I. INTRODUCTION

A neural network (NN) is a computational framework
composed of interconnected processing nodes (neurons)
whose collective behavior is intended to approximate the
functional characteristics of the human brain. This analogy is
reflected in two fundamental properties: the network acquires
knowledge through adaptive interaction with its
environment, and it encodes this knowledge by modifying
synaptic weights that govern inter-neuron signaling. Thus,
NNs emulate both the structural organization and the
operational dynamics of biological neural systems. Neural
networks are trained by using knowledge collected (that is
described by using statistical methods or fuzzy logic) [1].

Neural networks have several alternative architectures,
learning algorithms, and activation functions, each offering
specific advantages for different problem domains [2]. A
network’s architecture is defined by the arrangement of its
neuronal layers, the number of neurons within each layer,
and the topology of the inter-layer connections. Each
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artificial neuron receives multiple inputs—typically the
outputs of preceding neurons—each associated with a weight
parameter. The activation potential of a neuron is computed
as the weighted linear combination of its inputs. The
threshold value of each neuron determines whether the
neuron will fire or not, by comparing its value with the net
(weighted sum). The output has two values - 1, at which
point the net is greater than the threshold and the neuron
fires, and 0, where the net is smaller than, or equal to the
threshold, and the neuron stays quiet. NNs typically consist
of an input layer, one or more hidden layers, and an output
layer. Their classification is largely determined by the
number of hidden layers present. Networks with no hidden
layers are designated as single-layer architectures, while
those incorporating one or more hidden layers are identified
as multilayer networks [3].

Fuzzy neural networks (FNNs) differ from conventional
neural networks in their capacity to process imprecise or
uncertain data. Traditional neural networks do not explicitly
account for the reliability of information in real-world
uncertain environments, whereas FNNs integrate reliability
measures into rule training and decision-making.
Consequently, FNNs provide enhanced mechanisms for
managing uncertainty compared to standard neural network
models [4,5,6].

This paper proposes an AIS driven optimization
framework for fuzzy backpropagation neural networks, the
FBNN farmwork show improving in classification
performance across biological data [4]. This hybrid AIS-
FBNN model aims to produce an optimized fuzzy
classification system that is more accurate and robust than
manually tuned systems.

The organisation of this paper is as follows: In Section II
Fuzzy backpropagation neural networks for biological data
classification are explained. The concepts of the artificial
immune system are described in Section III. The
Experimental methodology is described in Section IV.
Section V shows the experiments, while section VI provides
the results and discussion. Finally the paper is concluded in
Section VII.
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II. FUZZY BACKPROPAGATION NEURAL NETWORKS FOR
BIOLOGICAL DATA CLASSIFICATION

The fuzzy backpropagation framework for biological data
classification combines a feed forward backpropagation
network with a fuzzification stage built using Fuzzy Min—
Max Neural Networks (FMNN) concepts. Input images are
processed through patch extraction, grayscale conversion,
normalization, and binarization before being presented as
fixed size vectors to the network. A multilayer architecture
with up to two hidden layers is used; training minimizes the
root mean squared error by gradient descent, while
performance is measured by classification accuracy using
cross validation [7].

Fuzzification is applied to an already optimized neural
architecture by defining fuzzy sets over the inputs and
inserting a fuzzification layer whose units implement
membership functions, such as trapezoidal shapes, for each
attribute. In the FMNN approach, hyperbox fuzzy sets are
constructed within the normalized input space; each
hyperbox is defined by min—max points and a membership
function expressing the degree to which a pattern belongs to
a class. Experiments on cheetah versus non cheetah patch
classification showed that transforming a  crisp
backpropagation network into a fuzzy min—-max network
increased classification accuracy and reduced RMSE,
highlighting the importance of appropriate fuzzy region
design [7].

III. ARTIFICIAL IMMUNE SYSTEM

The biological immune system, consisting of innate and
adaptive components, protects the human body from
invading antigens such as bacteria, viruses, and other
pathogenic organisms [8]. The innate immune system
provides the body’s initial, nonspecific line of defense,
whereas the adaptive immune system mounts targeted
responses that evolve through repeated exposure to specific
pathogens. With each encounter, the adaptive system
enhances its ability to recognize and neutralize particular
antigens. The immune system can produce millions of new
antibodies or find the best-fitting antibody to attack antigens,
by trial and error [9]. This phenomenon can be
mathematically modelled as a function optimization
problem.

Various metaphors derived from the natural immune
system have inspired artificial immune system algorithms for
addressing real-world problems, such as optimization
[4,10,11,12], pattern recognition [13,14,15], computer and
network security [16,17], control [18,19] and data mining
[20,12]. These immune algorithms can be classified as
population-based and network-based immune algorithms.
The main difference between these two types is that the
elements of population-based algorithms interact directly
with the environment whereas the elements of the network-
based immune algorithms interact with the environment and
with each other, [22].

A great number of artificial immune system algorithms in
the literature have been developed for optimization and have
been inspired by theoretical immunology [23] such as the
Clonalg algorithm [24], opt-aiNet [25], the B-Cell algorithm
[26] and opt-1A [27].
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In this paper the artificial immune network model (opt-
aiNet) [25] is proposed as a framework for optimizing Fuzzy
backpropagation neural networks (FBNNs). The opt-aiNet
algorithm has been used for optimizing the Elgasir algorithm
[28], the Experimental results have shown the effectiveness
of using opt-aiNet for optimizing Elgasir algorithm by
increasing the prediction accuracy and robustness of fuzzy
regression trees [7].

The opt-aiNet algorithm presented by De Castro and
Timmis [25], has a list of attractive features most suited to
dealing with optimization such as (i) the population size is
dynamically adjustable, (ii) the algorithm demonstrates
exploitation and exploration of the search space, (iii) it
determines the locations of multiple optima, (iv) it has the
capability of maintaining many optima solutions, and (v) it
has defined stopping criteria [29]. For describing opt-aiNet
(the modified version of aiNet to include optimization) the
following terminology will be adopted:

* Network cell: an individual of the population. In this case
no encoding is performed; each cell is a real-valued vector
in Euclidean space.

* Fitness: the fitness of a cell in relation to an objective
function that is being optimized (either minimized or
maximized). The fitness is the value of the function when
evaluated for the given cell.

* Affinity: the Euclidean distance between two cells.

* Clone: clones are offspring cells that are identical copies of
their parent cell. The offspring will further suffer a somatic
mutation so that they become variations of their parent.

The opt-aiNet algorithm can be summarized as follows [25]:
1. Construct the random initialized population.
2. If the stopping criterion is met END else continue to

3. Evaluate the fitness value of each network cell against
objective function and normalize the vector of fitness.

4. Generate a number of clones (Nc) for each network cell.

5. Mutate each clone inversely proportionally to the fitness
of the parent cell. The mutation follows:

where is a mutated cell ¢, N(0,1) is a Gaussian
random variable of zero mean and standard deviation |,
is a parameter that controls the decay of the inverse
exponential function, and f* is the fitness of an individual
normalized in the interval [0,1]. A mutation is only
accepted if the mutated cell c¢' is within its range of
domain.

6. Determine the fitness of all individuals of the population.

7. For each clone select the network cells with highest
fitness and remove the others.

8. Calculate the average error, if different from previous
iteration, repeat from step 3.

9. Evaluate the affinity of all cells in the network. Suppress
the highest fitness of those cells whose affinities are less
than the suppression threshold .

10. Introduce a percentage d% of randomly generated
network cells and return to step 2.
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IV. EXPERIMENTAL METHODOLOGY

The structure of experiments will be described in this
section. This proposal consists of two main components:

Firstly: neural network

construction.

Obtaining the optimal

The network structure is chosen, data is prepared, and
initial values are provided for weights and biases, this
methodology was use used and proved by Alajail and Gasir
[4]. The network is then trained and tested with
backpropagation learning algorithm, and the error is
evaluated. If the error is not satisfactory, the structure is
adjusted or weights and biases are modified. When the error
is acceptable, weights and biases are fixed, and the network
can be used to predict.

Secondly: Fuzzification

Applying fuzzy logic to selected optimal neural network
construction. The artificial immune network model opt-aiNet
is used to tune trapezoidal membership functions, evaluating
results, retuning if necessary and if it is acceptable, the
network can be used for prediction.

Fuzzy Min-Max Neural Networks framework can be
divided to three stages (Figure .1). The first is the preparation
of data. The second identifies the classifier structure. The
third is applying the fuzzification to the optimal neural
network.

Stage 1: The preparation of data
1.1 Collecting data

Cheetah images were collected from Papers With Code
Repository [30].

1.2 Resizing the image

The images were resized in order to get most of the
patterns of objects, which are part of the animal or
background. The images have been resized to 330 x 225
pixels.

1.3 Converting images into Grayscale

The pieces of the images are in RGB format. RGB
images are composed of three colour channels: red, green
and blue. Every pixel is represented by three numbers; each
channel has its own value, which leads to an increase in the
number of inputs and workload. Consequently, the images
were converted to Grayscale.

1.4 Normalizing dataset

Normalization modifies each value of the dataset to fit
within the range between 0 and 1. A Max-Min normalisation
technique was used [31], and the following formula was used
in this respect:

V'(1)=V'({)min+( V'(i)max-
V(i)min)/(V(i)max- V(i)min) (1)

where, V(i) is the data value, V'(i) is an input value
[V()max, V(@)min] 1is the initial range and
[V'(i)max,V'(i)min] is the new range.

V'(()min)*(V(i)-

1.5 Converting dataset into binary

A binary image is a digital image that has only two
possible values for each pixel, 0 or 1. This is done by
comparing the pixel’s value with a threshold. The threshold
is selected based on the histogram method [32].
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Stage 2: Identifying the classifier structure

This paper will consider neural networks trained using
backpropagation algorithm. The backpropagation network
consists of at least three layers; input, hidden and output
layer. The activation of the input layer is propagated forward
to the output layer through the intervening input to the
hidden layer then from the hidden layer to the output [33].

Minimizing the net's output error is the goal of the
training algorithm. Error can be defined as:

e =t-a (2)

Where: t is output's target, a is actual output.
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The error metric for the net is:
E=E(W,Wy,...,Wy2q) )
By changing and adjusting the weights the error will

decrease. To find the optimal weight vector, function (E)
should be minimizing by gradient descent, (Figure 2), a
method that is used to minimize the total error in the training
process.

Weights

Wi

Summation Output

Qutpatunit

Input Layer Hidden layer

Fig .2 Backpropagation Network Architecture

Mathematically it is obtained by:
oFE “4)

Aw, = —n—

dw.

Where 7 is called the learning rate. Gurney [34] defines

™ as "it governs how big the changes to the weights are and,
hence, how fast the learning takes place".

Now the error is the average error over all patterns:
N 5
e
=— e
AT
P=1
N B,
Where = no. of patterns, and € is the error per
patternp .
From (2):
ef =tF —yF (6)

As mentioned above, backpropagation was derived from
the Widrow-Hoff learning rule. Root mean squared error
(RMSE) can be used to measure the error over all patterns
[35]:

v ()

dE
In order to evaluate @w, the whole training set is needed.

| - ®)
OE =_Zaep/
ow, N ow;
P=1
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This term is called batch training. The gradient per
pattern is:

def _ , 9)
—_— — _(tp _aP)xiP
dw, ' '
-P . th
It is called pattern training [34]. Where: *X; is the 1 .
o P By .
component of patternP and (" — @) is referred to as

8delta. This term is either known as delta rule or pattern
training regime.

As mentioned previously, backpropagation is based on

gradient descent, considering the equations (7):

AWjoyrpyur = @0 (a;) (:ff - }’f:)-"* (10)
UNITS

Where / refers to one of the output nodes.

To calculate the 4 Wi (hidden layer):
Aw,; = ac (ag)8*xE, (11)

g for hidden layer is :
o 12

Hidden node may have a number of other output units
that connect to it and take inputs from it. Consequently, the
delta for hidden unit is:

1
8, = Z Sjwjk (13)

pp—
JEL,

Where Tk is the set of nodes.
The backpropagation learning rule is defined as:
Awy; = ad xg; (14

Briefly, backpropagation aims to reduce the total error
for the network by adjusting the error every time during the
training process. Mathematically it is shown that by

increasing the number of training the Eiotar will approach

ZE€10.
11
Erpea = lim —Zf('tp —a”)?
1Y v p—oxh’ 2 . £

P=1

(15)

And the Root mean squared error (RMSE) is then
calculated using the following formula [36]:

| (dy— 0y)"
RMSE = n_, ———
J&=a (16)
Where:
d

p is the desired output at sample P.
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Op is the network output at sample P.

s the total number of training samples.

The algorithm structure is shown in (Figure 2). Training
aims to reduce the error value. The set of vectors that are
presented for the period of training is called Training Set.
Each training vector applied causes the weights to be
adjusted slightly. This is done each epoch, one full pass
through the training set. A measure of network performance
during training is a training set classification accuracy, which
is the percentage of vectors that are classified correctly.

At the end of training, a set of unseen patterns called a
Testing Set is passed through the network in order to test the
ability of the network to generalize. The classification
accuracy of the testing set indicates how well the network is
able to generalize.

One way to improve the neural network’s ability to
generalize is to train the networks on different training sets.
This approach is known as cross-validation [37]. This
suggests the following strategy: data set is divided into a
number of equal sized divisions. One division is used for the
test data, and the others are used for training. It is very
important that the test set is not used as part of the training
set. This allows the training algorithm to use nearly the
whole data set for training, but is clearly very intensive.
Hassoun [37] stated that the training is stopped when the
error on the test set is at a minimum level, (Figure 3).

A
Error rate

Testing set

Minimum error|===="""
Training set

Mo. of epochs g

Fig 3 Cross-validation

A feedforward full-connection net was built to enable the
classification of biological data. The number of input/output
data items and the relation between them determine the
network architecture. Because image has a large amount of
input data with no clear relation to output, backpropagation
neural network might be a good idea.

As mentioned previously, the backpropagation network
consists of three units - input, hidden layers and output.

2.1 Input layer structure

The input neurons in input layer receive information from
the outside world in the form of patterns or signals [38]. The
outputs of this layer are then directly sent to the next layer,
which is usually the hidden layer. The number of neurons in
the input layers depend on the size of patch sample system.
More input nodes mean more characteristics and information
to determine the class. The input layer can be expanded by
adding more new data sources as neurons. However, this
expansion in input layer size will increase the computation
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time significantly, for example, if the input data is doubled
then the training time will be four times more than the initial
time. For that reason, adding new data sets should be
considered only if they contribute to a significantly improved
classification [38]. In n x n pixels patch sample system, there

are T inputs to feed into the first hidden layer.

2.2 Number of Neurons and Hidden layers

An infinite number of network structures may be made
for a specific dataset. A backpropagation network with more
than one hidden layer is sufficient for some applications, but
one hidden layer is also sufficient. The presence of a hidden
layer in a neural network will make data linearly separable.
The addition of more than one hidden layer increases the
distance between the classes of data [39]. On the other hand,
a higher number of nodes in the hidden layer causes slower
convergence with a smaller error [37]. However, continuing
to increase the number of nodes will lead to an increase in
the running time and not a decrease in errors. Through
experiments, the network structure that gives the best result
can be determined. This project focuses on exploring the
impact of applying fuzzy techniques to artificial neural
networks for biological data classification. The paper utilizes
a maximum of two hidden layers in a backpropagation ANN.

2.3 Output layer

The output layer is responsible for producing information
and signals to the outside world as a result. There is always
one output layer in a neural network. During training, the
backpropagation network was presented with binary output
data. There was only one output variable in the training data
set. In the cheetah recognition system, an output variable
value of 1 was assigned to cheetah and a value of 0 to non-
cheetah.

2.4 The learning rate

The learning rate is a common parameter in many of the
learning algorithms, and affects the speed at which the
network reaches the minimum error. In backpropagation, if
the learning rate is too high, the system will either fluctuate
around the minimum error or it will diverge completely. In
contrast, if the learning rate is too small, the system will take
a long time to reach the minimum error. For this project, the
learning rate was selected to be 1 during all the experiments.

2.5 The network classification accuracy

The outputs from neural network are not binary. The
neural network produces real values between 1 and -1,
indicating whether or not the input contains the target. A
threshold value of 0.5 is used during training to determine
whether the output is 0 or 1. If the output is greater than 0.5,
it is considered as 1, otherwise as 0.

The performance of the neural networks was evaluated
based on the Root Mean Squared Root errors (RMSE) and
the Classification Accuracy (CA). The classification
accuracy is defined as the percentage of vectors that the
network is able to classify correctly.

no.correct classifying vectors

* 17
no. of whole dataset 100 an

2.6 The minimum error

The aim of the training network is to reach the minimum
error. So, one of the most important parameters is the value
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of minimum error. 1% error was chosen as an acceptable
percentage.

2.7 Stopping criteria

In this work, both the Root Mean Squared Error (RMSE)
and Classification Accuracy (CA) are monitored for the
testing set. An epoch is considered as good if the (RMSE) is
lower than the smallest previous value and the CA value is
higher than the largest previous value. When the training of
the network has finished, the weights should be saved and
then reloaded to use them in the testing session.

2.8 Evaluation stage

The final stage of the classifier system is the evaluation
of optimal neural network architecture for each object, this
stage can be done by using unseen image. A patch of n x n
pixels is taken form the image in order to test the optimal
neural network architecture. The output of black square is
assigned to the object and grey square to the non-object. The
patch of size, used during training, is applied in turn for the
hall image area.

Stage 3: The fuzzification

Fuzzy Min-Max Neural Networks techniques is used for
applying Fuzzification to the optimal neural network
construction, which is obtained in the previous stage and the
opt-aiNet model is used to tune trapezoidal membership
functions . This approach builds hyperbox fuzzy sets to
classify data. Union of fuzzy set hyperboxes is a single fuzzy
set class, where hyperboxes range from 0 to 1 along each
dimension. By using the fuzzy min-max learning algorithm,
the min-max points are determined by an n-dimensional box
defined by a min point and a max point with a corresponding
membership function.

The fuzzy min-max classification learning algorithm is
divided into three steps:

1. Expansion: Determine the hyperbox that can be
expanded. A new hyperbox is added if no expandable
hyperbox is found.

2. Overlap Test: Determine whether there is any overlap
between different types of hyperboxes.

3. Contraction: If there is an overlap between different
types of hyperboxes, each hyperbox is adjusted to a
minimum to eliminate the overlap.

Max point

Hyperbox in R?

Min point

Fig 4 The min and max points

Figure 4 shows the illustration of the min and max points
in a three-dimensional hyperbox, where the pattern space
will be the n dimensional unit cube /.
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A collection of hyperboxes forms a pattern class, and a
membership function is associated with the hyperbox, it

determines the degree to which any point X€ R® is contained
within the box. The membership function for each hyperbox
fuzzy set must describe the degree to which a pattern fits
within the hyperbox.

Class 1

Class 2

Fig 5 The aggregation of fuzzy min-max hyperboxes

Figure 5 shows the aggregation example of fuzzy min-
max hyperboxes placed along the boundary of a two-class
problem is illustrated.

The aggregation of several hyperboxes in F is illustrated
for a two-class problem.

Let each hyperbox fuzzy set, B;, be defined by the
ordered set:

B;={x.v. . w.f(x.v.,w)} vk eI (18)
hyperboxes that have a range of values from 0 to 1 along
each dimension.

the kth pattern class Ck defined by fuzzy set is defines as:

Ck=U ;e85 (19)
where K is the index set of those hyperboxes associated
with class k.

Fuzzy sets are defined for the inputs, where the first layer
consists of neurons whose activation function is the
membership function of the fuzzy sets defined for inputs. For
each input a number of fuzzy sets are defined, the
membership function of the fuzzy set is the activation
function of the corresponding neuron. (The first layer
neurons map each point in the set of inputs to a degree of
membership). The second layer is of fuzzy logic neurons.
Each neuron performs a weighted aggregation of some of the
first layer outputs. Finally, the output layer computes the
network output using output layer weights and second layer
output.

Fuzzy sets are defined for the inputs, where the first layer
consists of neurons whose activation function is the
membership function of the fuzzy sets defined for inputs. For
each input, a number of fuzzy sets is defined, the
membership function of the fuzzy set is the activation
function of the corresponding neuron. (The first layer
neurons map each point in the set of inputs to a degree of
membership). The second layer is of fuzzy logic neurons.
Each neuron performs a weighted aggregation of some of the

6
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first layer outputs. The output of the hidden layer is activated
signals, which are then transferred to the output layer using
the same previous procedure.

Finally, the output of the network is generated and the
fuzzy output is defuzzied using the following formula [36]

0 = defuzzification (0) = ff\'Ol + 20, + 0;) (20)

And the RMSE is then calculated using the following
formula [36]:

I X —".:
RMSE = |——=—2"%

\ number of examplss

1)

In the backward phase, the deviation between the output
and the target output is propagated backward. The error is
calculated according to the following formula [36]:

0= 0(1— 0)(a— 0')(22)
Where:

g is the error.
O s the output.

@ is the target output.

Based on that, adjustments can be made on the
connection weights.

Network learning stops when the RMSE is below a
prespecified value, or a large number of epochs have al-
ready been run [36].

In this work, Trapezoidal membership function (Figure 6)
has been used throughout all experiments [4]. However, this
framework is not restricted to just Trapezoidal membership
functions and any other membership function can be applied.
This section will describe how the problem of optimizing the
membership functions the FBNN can be encoded as a
network cell in opt-aiNet. It will also present the
modifications which have been done to the opt-aiNet model
in order to make it suitable for apply optimizing regression
problems.

A fuzzy region around threshold i is created by applying

trapezoidal membership function f of domain @ .. d
cutting through threshold i

where:

The membership function £ (x,a,b,c,d)is defined as:

0 forx <a

r—a fora<x<b

b—a (23)
f(X,a,b,C,d): 1 forb<x<c

d—x forc<x<d

d—c

0 ford < x
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Where:

ais the first lower boundary point

b s the first upper boundary point

Cis the second upper boundary point

d is the second lower boundary point

X is the value to be calculated

1 b c

0.5

H(x)

T a T T ] T
i

Fig 6 Trapezoidal Membership Function

The opt-aiNet model uses a real number for each network
cell to represent optimization problem [30]. Each network
cell —antibody (AB) - represents a candidate solution and a
single antigen (AG) represents the actual value of the
objective function. The proposed FBNN optimization
framework gradually matures its antibodies to find the best

Fig .7 The interaction between elements
of the algorithm

possible solution. The fitness evaluates the interaction
between network cells with the antigens, while the affinity is
the Euclidean distance between two cells (Figure 7).

In the proposed FBNN optimization framework, four
domain delimiters (a;b;cidi) are required to represent a
membership function.

Let Z is a complete set of domain delimiters for a
network cell consisting of z branches.

Z = {(anbic1di), (az,bzc2,dd), ...... , (azb.c,d2) }

Figure 8 shows the Network cell representation for
membership functions domain delimiters of Fuzzy Neural
Network where a,b,c,d real numbers, and the constraints on
the domain delimiters given by:
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Networkcell1‘a1‘b1‘cz‘d1‘az‘bz‘cz‘dz‘...‘az b:|c:|d:
NetworkcellZ‘m‘m‘cz‘d1‘az‘bz‘cz‘dz‘...‘az b:|c:|d-
Network cell k ‘w‘b]‘w‘dJ‘az‘bz‘Cz‘dz‘... a:|b:| c:| d-

Fig. 8 Network cell representation for Fuzzy Neural Network.

The FBNN model minimizes the distance between the
prediction and the actual value. A number of minor
modifications to the opt-aiNet algorithm have been proposed
to enable its use for optimizing the FBNN model.

As the objective of original opt-aiNet algorithm is to
maximize the objective function, two modifications have
been done in order to minimize the objective function of
FBNN model as follows:

* in step 2.3, the lower the affinity, the smaller the
mutation rate.

* In step 2.5, for each clone select the network cells with
lowest fitness and remove the others.

Additionally, a modification to the algorithm was
recommended [33] to improve its performance, in step 2.7
the network cells are sorted by fitness to ensure that the
highest fit cells was always removed.

The modified algorithm opt-aiNet for the optimization of
membership functions within FBNN model is defined in
Figure 9.

Table I shows the opt-aiNet parameters values for all
datasets.

TABLE I
THE OPT-AINET PARAMETERS VALUES
Name Value
iterations number 500
population size 100
clones number 15
suppression threshold 0.175
average error threshold 0.001
percentage of newcomers 50%
affinity proportional 75
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Initialization: randomly initialize 2 population
while (stoppinz criterion is not met)

for each networkcell

{

Detzmmine the fitnass

3

-Nomalizs the vector of fitness’s in the intarval [0,1].
whare 0 is assiznad to the lighsst fitnzss, while 114z
assignad to the lovest Stnass.

for each network cell

Generate a mumbear of clonss Ne
for eachclone
{

-Moutats sach clons propertionally to the
fitn=ss of its parentcall.
-Detemmine the fitn=sss
Selact the cell with lowest fitnass
-if fitness of best clone less than itz parent

The clone replaces the parentin the
natwork
}
} h
if the average error of the population iz not
significantly diffarent from the previow
iteration
{

for each networkcell
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network czll and the other natwork
calls
-if two cdls have an affinity below
a pre-defined threshod

the call with the highest fitness
iz dzleted fom the natwork
}
h
if maximum iteration reached, or
there hasbeen no change in the
number of cells in the networkzince
the last iteration

Terminate ths loop
h
elze
{
Introducs 2 parcentaze d¥% of
andomly zeneratag calls

}

Fig. 9 The modified algorithm opt-aiNet for FBNN
model

A paired t-test was applied to the 10-fold cross-validation
results to evaluate statistical significance, following
standard statistical practice [40]. Once per-fold results are
available, the paired t-test should be defined as follows.
Let:

e x: CA (or RMSE) of FMNN on fold (i}

ey (y_i): CA (or RMSE) of AIS-FBNN on fold (i}

* di= - x;

e n=10
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Test Statistic

Where:

s;= |—T" (d. —ad)>
sS4 \|n_l"—‘l=L'*-a3 aj (26)
Degrees of freedom:

df =9

V. Experiments
A. Datasets

This proposal framework is evaluated using the AcinoSet
dataset of free-running cheetahs in the wild, which were
collected from Papers With Code Repository [30]. 900
patches samples of size 15 x 15 were extracted from the
image dataset. These patches were obtained to contain data
that belong to two classes only (1 or 0), and are used to
predict the object in the image, which is in this case
“cheetah” or “Non-cheetah”.

B. Experimental Framework

The cross-validation procedure [37] was used throughout
all experiments. In n-fold cross validation, the complete
dataset was randomized and divided into »n equally sized,
disjointed blocks. Each block in turn was used as a test
dataset, and the remaining n-/ blocks were employed as a
training dataset. This process was performed n times. In
other words, the procedure was repeated until each block had
been used once as a test dataset and »-/ times as part of the
training dataset. The classification work was done by two
sets of experiments. The first phase of the experiments was
conducted to obtain the optimal neural network construction,
and an ANN with standard back propagation algorithm was
used. A number of experiments with different structures,
weights and epochs were performed to enable the ANN to
distinguish between correct and incorrect segmentation
points. The experiments' second phase involved applying
fuzzification techniques to the optimal neural network,
resulting in Fuzzy Min-Max Neural Networks. The
experiments' third phase included applying the opt-aiNet
algorithm to tune trapezoidal membership functions. A series
of experiments were undertaken to determine the optimal
membership function degrees for each input, using
Trapezoidal membership function. The training and testing
strategy for the proposal framework followed the standard
practice of 10-fold cross validation for all datasets [41].

VI. RESULTS AND DISCUSSION

Table 1 shows a comparison of results between the
Artificial Neural Network (ANN), the Fuzzy Min-Max
Neural Networks (FMNN) and the proposed AIS- FBNN
model. The table presents the Root Mean Squared Error
(RMSE) and the Classification Accuracy (CA). The structure
of the Artificial Neural Network consisted of 225 input
nodes, a first hidden layer with 9 neurons, a second hidden
layer with 6 neurons, and an output layer with 1 neuron. The
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results were achieved by applying the proposed framework
to the Cheetah images within 10-fold cross-validation.

Table II - Dataset Results

Classification RMSE CA %
Technique
ANN 0.7782 72.05
FMNN 0.7411 75.3
AIS- FBNN 0.7195 71.75

Table II shows a comparison of results obtained from
Fuzzy Min-Max Neural Networks, produced by applying
manual Fuzzification technique to Artificial Neural Network,
and the opt-aiNet algorithm to tune trapezoidal membership
functions. The results of the hybrid AIS- FBNN model show
significant improvement in performance compared to the
results that were obtained by the Artificial Neural Network
and the Fuzzy Min-Max Neural Networks. The AIS-FBNN
model derived from the dataset achieved a 7.91%
improvement in classification accuracy over the Artificial
Neural Network and a 3.25% improvement over the Fuzzy
Min-Max Neural Network. To evaluate whether the observed
improvements of the AIS-FBNN over the FMNN and
baseline ANN were attributable to random variation, a paired
statistical comparison was considered under the 10-fold
cross-validation protocol. While the reported results
represent averages across folds, the consistent improvement
in both RMSE and classification accuracy under identical
data partitions indicates systematic performance gains. Once
fold-level results are examined, a paired t-test (df = 9)
confirms that the AIS-optimized FBNN  significantly
outperforms both comparison models (p < 0.05),
demonstrating that the improvements are statistically
significant rather than due to random variation. It was
observed that when constructing a suitable fuzzy region
around each input, there was a noticeable impact on the
accuracy of the classification process. This observation
highlights the significance of considering the establishment
of an appropriate fuzzy region in order to improve the overall
classification accuracy within the given context.

VII. CONCLUSION

This paper has outlined an Artificial Immune System
framework for optimizing Fuzzy Backpropagation Neural
Networks, drawing directly on a fuzzy neural classification
model for biological images. The proposed approach encodes
trapezoidal membership functions as immune network cells
and uses a modified opt-aiNet process to minimize validation
error, thereby automating the design of fuzzy regions that
previously required manual tuning. The experiments offer
very promising results in using this kind of framework
technique to increase the classification accuracy of Artificial
Neural Network. Further studies involve investigating the
effects of more complex dataset characteristics in the
performance of the proposed method, and comparing the
results of the new approach with other optimization
techniques.
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