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Abstract— Fuzzy Neural Networks (FNNs) enhance 
conventional Artificial Neural Networks (ANNs) by 
incorporating fuzzy membership functions, which enable the 
handling of uncertainty, ambiguity, and imprecise information. 
While Fuzzy Backpropagation Neural Networks (FBNNs) 
improve classification performance across noisy datasets, the 
effectiveness of fuzzification heavily depends on the proper 
tuning of membership function parameters—typically 
optimized manually. This paper presents a novel Artificial 
Immune System framework for optimizing Fuzzy 
Backpropagation Neural Networks used in the classification of 
biological image data. The approach integrates a fuzzy min–
max fuzzification layer with a feed-forward backpropagation 
network and applies an optimization version of an Artificial 
Immune Network model, derived from opt-aiNet, to tune 
trapezoidal membership functions. Experimental results 
confirm that the proposed immune-driven optimization is an 
effective technique for enhancing FBNN robustness and 
generalization.. 

Keywords Artificial Neural Networks, fuzzification, 
optimization, Artificial Immune System  

I. INTRODUCTION 
A neural network (NN) is a computational framework 

composed of interconnected processing nodes (neurons) 
whose collective behavior is intended to approximate the 
functional characteristics of the human brain. This analogy is 
reflected in two fundamental properties: the network acquires 
knowledge through adaptive interaction with its 
environment, and it encodes this knowledge by modifying 
synaptic weights that govern inter-neuron signaling. Thus, 
NNs emulate both the structural organization and the 
operational dynamics of biological neural systems. Neural 
networks are trained by using knowledge collected (that is 
described by using statistical methods or fuzzy logic) [1].  

Neural networks have several alternative architectures, 
learning algorithms, and activation functions, each offering 
specific advantages for different problem domains [2]. A 
network’s architecture is defined by the arrangement of its 
neuronal layers, the number of neurons within each layer, 
and the topology of the inter-layer connections. Each 

artificial neuron receives multiple inputs—typically the 
outputs of preceding neurons—each associated with a weight 
parameter. The activation potential of a neuron is computed 
as the weighted linear combination of its inputs. The 
threshold value of each neuron determines whether the 
neuron will fire or not, by comparing its value with the net 
(weighted sum). The output has two values - 1, at which 
point the net is greater than the threshold and the neuron 
fires, and 0, where the net is smaller than, or equal to the 
threshold, and the neuron stays quiet.  NNs typically consist 
of an input layer, one or more hidden layers, and an output 
layer. Their classification is largely determined by the 
number of hidden layers present. Networks with no hidden 
layers are designated as single-layer architectures, while 
those incorporating one or more hidden layers are identified 
as multilayer networks [3]. 

Fuzzy neural networks (FNNs) differ from conventional 
neural networks in their capacity to process imprecise or 
uncertain data. Traditional neural networks do not explicitly 
account for the reliability of information in real-world 
uncertain environments, whereas FNNs integrate reliability 
measures into rule training and decision-making. 
Consequently, FNNs provide enhanced mechanisms for 
managing uncertainty compared to standard neural network 
models [4,5,6]. 

This paper proposes an AIS driven optimization 
framework for fuzzy backpropagation neural networks, the 
FBNN farmwork show improving in classification 
performance across biological data [4]. This hybrid AIS- 
FBNN model aims to produce an optimized fuzzy 
classification system that is more accurate and robust than 
manually tuned systems. 

The organisation of this paper is as follows: In Section II 
Fuzzy backpropagation neural networks for biological data 
classification are explained. The concepts of the artificial 
immune system are described in Section III. The 
Experimental methodology is described in Section IV. 
Section V shows the experiments, while  section VI provides 
the results and discussion. Finally the paper is concluded in 
Section VII. 
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II. FUZZY BACKPROPAGATION NEURAL NETWORKS FOR 
BIOLOGICAL DATA CLASSIFICATION 

The fuzzy backpropagation framework for biological data 
classification combines a feed forward backpropagation 
network with a fuzzification stage built using Fuzzy Min–
Max Neural Networks (FMNN) concepts. Input images are 
processed through patch extraction, grayscale conversion, 
normalization, and binarization before being presented as 
fixed size vectors to the network. A multilayer architecture 
with up to two hidden layers is used; training minimizes the 
root mean squared error by gradient descent, while 
performance is measured by classification accuracy using 
cross validation [7].  

Fuzzification is applied to an already optimized neural 
architecture by defining fuzzy sets over the inputs and 
inserting a fuzzification layer whose units implement 
membership functions, such as trapezoidal shapes, for each 
attribute. In the FMNN approach, hyperbox fuzzy sets are 
constructed within the normalized input space; each 
hyperbox is defined by min–max points and a membership 
function expressing the degree to which a pattern belongs to 
a class. Experiments on cheetah versus non cheetah patch 
classification showed that transforming a crisp 
backpropagation network into a fuzzy min–max network 
increased classification accuracy and reduced RMSE, 
highlighting the importance of appropriate fuzzy region 
design [7]. 

III. ARTIFICIAL IMMUNE SYSTEM 
The biological immune system, consisting of innate and 

adaptive components, protects the human body from 
invading antigens such as bacteria, viruses, and other 
pathogenic organisms [8]. The innate immune system 
provides the body’s initial, nonspecific line of defense, 
whereas the adaptive immune system mounts targeted 
responses that evolve through repeated exposure to specific 
pathogens. With each encounter, the adaptive system 
enhances its ability to recognize and neutralize particular 
antigens. The immune system can produce millions of new 
antibodies or find the best-fitting antibody to attack antigens, 
by trial and error [9]. This phenomenon can be 
mathematically modelled as a function optimization 
problem. 

Various metaphors derived from the natural immune 
system have inspired artificial immune system algorithms for 
addressing real-world problems, such as optimization 
[4,10,11,12], pattern recognition [13,14,15], computer and 
network security [16,17], control [18,19] and data mining 
[20,12]. These immune algorithms can be classified as 
population-based and network-based immune algorithms. 
The main difference between these two types is that the 
elements of population-based algorithms interact directly 
with the environment whereas the elements of the network-
based immune algorithms interact with the environment and 
with each other, [22].  

A great number of artificial immune system algorithms in 
the literature have been developed for optimization and have 
been inspired by theoretical immunology [23] such as the 
Clonalg algorithm [24], opt-aiNet [25], the B-Cell algorithm 
[26]  and opt-IA [27]. 

In this paper the artificial immune network model (opt-
aiNet) [25] is proposed as a framework for optimizing Fuzzy 
backpropagation neural networks (FBNNs). The opt-aiNet 
algorithm has been used for optimizing the Elgasir algorithm 
[28], the Experimental results have shown the effectiveness 
of using opt-aiNet for optimizing Elgasir algorithm by 
increasing the prediction accuracy and robustness of fuzzy 
regression trees [7].  

The opt-aiNet algorithm presented by De Castro and 
Timmis [25], has a list of attractive features most suited to 
dealing with optimization such as (i) the population size is 
dynamically adjustable, (ii) the algorithm demonstrates 
exploitation and exploration of the search space, (iii) it 
determines the locations of multiple optima, (iv) it has the 
capability of maintaining many optima solutions, and (v) it 
has defined stopping criteria [29]. For describing opt-aiNet 
(the modified version of aiNet to include optimization) the 
following terminology will be adopted:  

• Network cell:  an individual of the population. In this case 
no encoding is performed; each cell is a real-valued vector 
in Euclidean space. 

• Fitness: the fitness of a cell in relation to an objective 
function that is being optimized (either minimized or 
maximized). The fitness is the value of the function when 
evaluated for the given cell. 

• Affinity: the Euclidean distance between two cells. 

• Clone: clones are offspring cells that are identical copies of 
their parent cell. The offspring will further suffer a somatic 
mutation so that they become variations of their parent. 

The opt-aiNet algorithm can be summarized as follows [25]: 

1. Construct the random initialized population. 

2. If the stopping criterion is met END else continue to  

3. Evaluate the fitness value of each network cell against 
objective function and normalize the vector of fitness. 

4. Generate a number of clones (Nc) for each network cell. 

5. Mutate each clone inversely proportionally to the fitness 
of the parent cell. The mutation follows: 

 where  is a mutated cell c, N(0,1) is a Gaussian 
random variable of zero mean and standard deviation  ,   
is a parameter that controls the decay of the inverse 
exponential function, and f* is the fitness of an individual 
normalized in the interval [0,1]. A mutation is only 
accepted if the mutated cell c' is within its range of 
domain. 

6. Determine the fitness of all individuals of the population. 

7. For each clone select the network cells with highest 
fitness and remove the others. 

8. Calculate the average error, if different from previous 
iteration, repeat from step 3. 

9. Evaluate the affinity of all cells in the network. Suppress 
the highest fitness of those cells whose affinities are less 
than the suppression threshold   .  

10.  Introduce a percentage d% of randomly generated 
network cells and return to step 2. 
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IV. EXPERIMENTAL METHODOLOGY 
The structure of experiments will be described in this 

section. This proposal consists of two main components: 

Firstly: Obtaining the optimal neural network 
construction.   

The network structure is chosen, data is prepared, and 
initial values are provided for weights and biases, this 
methodology was use used and proved by Alajail and Gasir 
[4]. The network is then trained and tested with 
backpropagation learning algorithm, and the error is 
evaluated. If the error is not satisfactory, the structure is 
adjusted or weights and biases are modified. When the error 
is acceptable, weights and biases are fixed, and the network 
can be used to predict. 

Secondly: Fuzzification   

Applying fuzzy logic to selected optimal neural network 
construction. The artificial immune network model opt-aiNet 
is used to tune trapezoidal membership functions, evaluating 
results, retuning if necessary and if it is acceptable, the 
network can be used for prediction.  

Fuzzy Min-Max Neural Networks framework can be 
divided to three stages (Figure .1). The first is the preparation 
of data. The second identifies the classifier structure. The 
third is applying the fuzzification to the optimal neural 
network.   

Stage 1: The preparation of data 
1.1  Collecting data 
Cheetah images were collected from Papers With Code 

Repository [30]. 

1.2  Resizing the image 
The images were resized in order to get most of the 

patterns of objects, which are part of the animal or 
background. The images have been resized to 330 x 225 
pixels. 

1.3  Converting images into Grayscale 
The pieces of the images are in RGB format. RGB 

images are composed of three colour channels: red, green 
and blue. Every pixel is represented by three numbers; each 
channel has its own value, which leads to an increase in the 
number of inputs and workload. Consequently, the images 
were converted to Grayscale. 

1.4  Normalizing dataset 
Normalization modifies each value of the dataset to fit 

within the range between 0 and 1. A Max-Min normalisation 
technique was used [31], and the following formula was used 
in this respect: 

V'(i)=V'(i)min+( V'(i)max- V'(i)min)*(V(i)-
V(i)min)/(V(i)max- V(i)min)   (1) 

where, V(i) is the data value, V'(i) is an input value 
[V(i)max, V(i)min] is the initial range and 
[V'(i)max,V'(i)min] is the new range. 

1.5  Converting dataset into binary 
A binary image is a digital image that has only two 

possible values for each pixel, 0 or 1. This is done by 
comparing the pixel’s value with a threshold. The threshold 
is selected based on the histogram method [32]. 

Stage 2: Identifying the classifier structure 

This paper will consider neural networks trained using 
backpropagation algorithm. The backpropagation network 
consists of at least three layers; input, hidden and output 
layer. The activation of the input layer is propagated forward 
to the output layer through the intervening input to the 
hidden layer then from the hidden layer to the output [33]. 

Minimizing the net's output error is the goal of the 
training algorithm. Error can be defined as: 

e_ =t-a (2) 

Where: t is output's target, a is actual output. 

 
Fig .1 Optimizing Fuzzy Neural Network Flowchart 
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 The error metric for the net is: 

 (3) 

By changing and adjusting the weights the error will 
decrease. To find the optimal weight vector, function  
should be minimizing by gradient descent, (Figure 2), a 
method that is used to minimize the total error in the training 
process. 

 
Fig .2 Backpropagation Network Architecture 

 

Mathematically it is obtained by: 

 

(4) 

Where  is called the learning rate. Gurney [34] defines 
 as "it governs how big the changes to the weights are and, 

hence, how fast the learning takes place". 

 

Now the error is the average error over all patterns: 

 

(5) 

Where  = no. of patterns, and  is the error per 
pattern . 

From (2): 

 (6) 

As mentioned above, backpropagation was derived from 
the Widrow-Hoff learning rule. Root mean squared error 
(RMSE) can be used to measure the error over all patterns 
[35]: 

 

(7) 

In order to evaluate , the whole training set is needed. 

 

(8) 

This term is called batch training. The gradient per 
pattern is: 

 

(9) 

It is called pattern training [34]. Where:  is the  
component of pattern  and  is referred to as 

delta. This term is either known as delta rule or pattern 
training regime. 

As mentioned previously, backpropagation is based on 
gradient descent, considering the equations (7):  

 
(10) 

Where  refers to one of the output nodes. 

To calculate the  (hidden layer): 

 (11) 

 for hidden layer is : 

 

(12) 

Hidden node may have a number of other output units 
that connect to it and take inputs from it. Consequently, the 
delta for hidden unit is:  

 

(13) 

Where  is the set of nodes. 

The backpropagation learning rule is defined as: 

 (14) 

Briefly, backpropagation aims to reduce the total error 
for the network by adjusting the error every time during the 
training process. Mathematically it is shown that by 
increasing the number of training the  will approach 
zero. 

 

(15) 

 

And the Root mean squared error (RMSE) is then 
calculated using the following formula [36]: 

         (16) 

Where:  

 is the desired output at sample . 
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 is the network output at sample . 

 is the total number of training samples. 

The algorithm structure is shown in (Figure 2). Training 
aims to reduce the error value. The set of vectors that are 
presented for the period of training is called Training Set. 
Each training vector applied causes the weights to be 
adjusted slightly. This is done each epoch, one full pass 
through the training set. A measure of network performance 
during training is a training set classification accuracy, which 
is the percentage of vectors that are classified correctly.  

At the end of training, a set of unseen patterns called a 
Testing Set is passed through the network in order to test the 
ability of the network to generalize. The classification 
accuracy of the testing set indicates how well the network is 
able to generalize. 

One way to improve the neural network’s ability to 
generalize is to train the networks on different training sets. 
This approach is known as cross-validation [37]. This 
suggests the following strategy: data set is divided into a 
number of equal sized divisions. One division is used for the 
test data, and the others are used for training. It is very 
important that the test set is not used as part of the training 
set. This allows the training algorithm to use nearly the 
whole data set for training, but is clearly very intensive. 
Hassoun [37] stated that the training is stopped when the 
error on the test set is at a minimum level, (Figure 3). 

 
Fig 3 Cross-validation 

A feedforward full-connection net was built to enable the 
classification of biological data. The number of input/output 
data items and the relation between them determine the 
network architecture. Because image has a large amount of 
input data with no clear relation to output, backpropagation 
neural network might be a good idea. 

As mentioned previously, the backpropagation network 
consists of three units - input, hidden layers and output. 

2.1 Input layer structure 

The input neurons in input layer receive information from 
the outside world in the form of patterns or signals [38]. The 
outputs of this layer are then directly sent to the next layer, 
which is usually the hidden layer. The number of neurons in 
the input layers depend on the size of patch sample system. 
More input nodes mean more characteristics and information 
to determine the class. The input layer can be expanded by 
adding more new data sources as neurons. However, this 
expansion in input layer size will increase the computation 

time significantly, for example, if the input data is doubled 
then the training time will be four times more than the initial 
time. For that reason, adding new data sets should be 
considered only if they contribute to a significantly improved 
classification [38]. In n × n pixels patch sample system, there 
are  inputs to feed into the first hidden layer. 

2.2 Number of Neurons and Hidden layers 
An infinite number of network structures may be made 

for a specific dataset. A backpropagation network with more 
than one hidden layer is sufficient for some applications, but 
one hidden layer is also sufficient. The presence of a hidden 
layer in a neural network will make data linearly separable. 
The addition of more than one hidden layer increases the 
distance between the classes of data [39]. On the other hand, 
a higher number of nodes in the hidden layer causes slower 
convergence with a smaller error [37]. However, continuing 
to increase the number of nodes will lead to an increase in 
the running time and not a decrease in errors. Through 
experiments, the network structure that gives the best result 
can be determined. This project focuses on exploring the 
impact of applying fuzzy techniques to artificial neural 
networks for biological data classification. The paper utilizes 
a maximum of two hidden layers in a backpropagation ANN. 

2.3 Output layer 
The output layer is responsible for producing information 

and signals to the outside world as a result. There is always 
one output layer in a neural network. During training, the 
backpropagation network was presented with binary output 
data. There was only one output variable in the training data 
set. In the cheetah recognition system, an output variable 
value of 1 was assigned to cheetah and a value of 0 to non-
cheetah. 

2.4 The learning rate 
The learning rate is a common parameter in many of the 

learning algorithms, and affects the speed at which the 
network reaches the minimum error. In backpropagation, if 
the learning rate is too high, the system will either fluctuate 
around the minimum error or it will diverge completely. In 
contrast, if the learning rate is too small, the system will take 
a long time to reach the minimum error. For this project, the 
learning rate was selected to be 1 during all the experiments. 

2.5 The network classification accuracy 
The outputs from neural network are not binary. The 

neural network produces real values between 1 and -1, 
indicating whether or not the input contains the target. A 
threshold value of 0.5 is used during training to determine 
whether the output is 0 or 1. If the output is greater than 0.5, 
it is considered as 1, otherwise as 0. 

The performance of the neural networks was evaluated 
based on the Root Mean Squared Root errors (RMSE) and 
the Classification Accuracy (CA). The classification 
accuracy is defined as the percentage of vectors that the 
network is able to classify correctly. 

 
(17) 

2.6 The minimum error  

The aim of the training network is to reach the minimum 
error. So, one of the most important parameters is the value 
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of minimum error. 1% error was chosen as an acceptable 
percentage. 

2.7 Stopping criteria   

In this work, both the Root Mean Squared Error (RMSE) 
and Classification Accuracy (CA) are monitored for the 
testing set. An epoch is considered as good if the (RMSE) is 
lower than the smallest previous value and the CA value is 
higher than the largest previous value. When the training of 
the network has finished, the weights should be saved and 
then reloaded to use them in the testing session. 

2.8 Evaluation stage 

The final stage of the classifier system is the evaluation 
of optimal neural network architecture for each object, this 
stage can be done by using unseen image. A patch of n × n 
pixels is taken form the image in order to test the optimal 
neural network architecture. The output of black square is 
assigned to the object and grey square to the non-object. The 
patch of size, used during training, is applied in turn for the 
hall image area. 

Stage 3: The fuzzification 

Fuzzy Min-Max Neural Networks techniques is used for 
applying Fuzzification to the optimal neural network 
construction, which is obtained in the previous stage and the 
opt-aiNet model is used to tune trapezoidal membership 
functions .  This approach builds hyperbox fuzzy sets to 
classify data. Union of fuzzy set hyperboxes is a single fuzzy 
set class, where hyperboxes range from 0 to 1 along each 
dimension. By using the fuzzy min-max learning algorithm, 
the min-max points are determined by an n-dimensional box 
defined by a min point and a max point with a corresponding 
membership function.  

The fuzzy min-max classification learning algorithm is 
divided into three steps:  

1. Expansion: Determine the hyperbox that can be 
expanded. A new hyperbox is added if no expandable 
hyperbox is found. 

2. Overlap Test: Determine whether there is any overlap 
between different types of hyperboxes. 

3. Contraction: If there is an overlap between different 
types of hyperboxes, each hyperbox is adjusted to a 
minimum to eliminate the overlap. 

 
Fig 4 The min and max points 

Figure 4 shows the illustration of the min and max points 
in a three-dimensional hyperbox, where the pattern space 
will be the n dimensional unit cube In. 

A collection of hyperboxes forms a pattern class, and a 
membership function is associated with the hyperbox, it 
determines the degree to which any point X∈  is contained 
within the box. The membership function for each hyperbox 
fuzzy set must describe the degree to which a pattern fits 
within the hyperbox. 

 
Fig 5 The aggregation of fuzzy min-max hyperboxes 

Figure 5  shows the aggregation example of fuzzy min-
max hyperboxes placed along the boundary of a two-class 
problem is illustrated. 

The aggregation of several hyperboxes in I2 is illustrated 
for a two-class problem. 

Let each hyperbox fuzzy set, Bj, be defined by the 
ordered set: 

. (18) 
hyperboxes that have a range of values from 0 to 1 along 

each dimension.  

the kth pattern class Ck defined by fuzzy set is defines as: 

 (19) 

where K is the index set of those hyperboxes associated 
with class k. 

Fuzzy sets are defined for the inputs, where the first layer 
consists of neurons whose activation function is the 
membership function of the fuzzy sets defined for inputs. For 
each input a number of fuzzy sets are defined, the 
membership function of the fuzzy set is the activation 
function of the corresponding neuron. (The first layer 
neurons map each point in the set of inputs to a degree of 
membership). The second layer is of fuzzy logic neurons. 
Each neuron performs a weighted aggregation of some of the 
first layer outputs. Finally, the output layer computes the 
network output using output layer weights and second layer 
output. 

Fuzzy sets are defined for the inputs, where the first layer 
consists of neurons whose activation function is the 
membership function of the fuzzy sets defined for inputs. For 
each input, a number of fuzzy sets is defined, the 
membership function of the fuzzy set is the activation 
function of the corresponding neuron. (The first layer 
neurons map each point in the set of inputs to a degree of 
membership). The second layer is of fuzzy logic neurons. 
Each neuron performs a weighted aggregation of some of the 
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Fig .7 The interaction between elements 
of the algorithm 

first layer outputs. The output of the hidden layer is activated 
signals, which are then transferred to the output layer using 
the same previous procedure.  

Finally, the output of the network is generated and the 
fuzzy output is defuzzied using the following formula [36] 

 (20) 

And the RMSE is then calculated using the following 
formula [36]: 

   (21) 
 

In the backward phase, the deviation between the output 
and the target output is propagated backward. The error is 
calculated according to the following formula [36]: 

 (22) 

Where: 

 is the error. 

 is the output. 

 is the target output.  

Based on that, adjustments can be made on the 
connection weights. 

Network learning stops when the RMSE is below a 
prespecified value, or a large number of epochs have al-
ready been run [36]. 

In this work, Trapezoidal membership function (Figure 6) 
has been used throughout all experiments [4]. However, this 
framework is not restricted to just Trapezoidal membership 
functions and any other membership function can be applied. 
This section will describe how the problem of optimizing the 
membership functions the FBNN can be encoded as a 
network cell in opt-aiNet. It will also present the 
modifications which have been done to the opt-aiNet model 
in order to make it suitable for apply optimizing regression 
problems.  

A fuzzy region around threshold i is created by applying 
trapezoidal membership function   of  domain   …  
cutting through threshold i 

where: 

The membership function is defined as: 

 (23) 

 

Where: 

is the first lower boundary point 

is the first upper boundary point 

is the second upper boundary point 

is the second lower boundary point 

is the value to be calculated 

 
Fig 6 Trapezoidal Membership Function 

The opt-aiNet model uses a real number for each network 
cell to represent optimization problem [30].  Each network 
cell –antibody (AB) - represents a candidate solution and a 
single antigen (AG) represents the actual value of the 
objective function. The proposed FBNN optimization 
framework gradually matures its antibodies to find the best  

 

possible solution. The fitness evaluates the interaction 
between network cells with the antigens, while the affinity is 
the Euclidean distance between two cells (Figure 7).  

In the proposed FBNN optimization framework, four 
domain delimiters (ai,bi,ci,di) are required to represent a 
membership function. 

Let Z is a complete set of domain delimiters for a 
network cell consisting of z branches. 

Z = {(a1,b1,c1,d1), (a2,b2,c2,d2), …… ,  (az,bz,cz,dz)  } 

Figure 8 shows the Network cell representation for 
membership functions domain delimiters of Fuzzy Neural 
Network where a,b,c,d real numbers, and the constraints on 
the domain delimiters given by: 
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Network cell 1 a1 b1 c1 d1 a2 b2 c2 d2 ... az bz cz dz 
 

Network cell 2 a1 b1 c1 d1 a2 b2 c2 d2 ... az bz cz dz 
      

 . 

. 

. 

. 

. 

. 

. 

Network cell k a1 b1 c1 d1 a2 b2 c2 d2 ... az bz cz dz 
 
Fig. 8 Network cell representation for Fuzzy Neural Network. 

 

The FBNN model minimizes the distance between the 
prediction and the actual value. A number of minor 
modifications to the opt-aiNet algorithm have been proposed 
to enable its use for optimizing the FBNN model. 

As the objective of original opt-aiNet algorithm is to 
maximize the objective function, two modifications have 
been done in order to minimize the objective function of 
FBNN model as follows:  

• in step 2.3, the lower the affinity, the smaller the 
mutation rate.  

• In step 2.5, for each clone select the network cells with 
lowest fitness and remove the others.    

Additionally, a modification to the algorithm was 
recommended [33] to improve its performance, in step 2.7 
the network cells are sorted by fitness to ensure that the 
highest fit cells was always removed. 

The modified algorithm opt-aiNet for the optimization of 
membership functions within FBNN model is defined in 
Figure 9. 

Table I shows the opt-aiNet parameters values for all 
datasets. 
 

TABLE I 
THE OPT-AINET PARAMETERS VALUES 

Name Value 
iterations number 500 
population size 100 
clones number 15 
suppression threshold 0.175 
average error threshold 0.001 
percentage of newcomers 50% 
affinity proportional 75 

 

 
Fig. 9 The modified algorithm opt-aiNet for FBNN 

model 

A paired t-test was applied to the 10-fold cross-validation 
results to evaluate statistical significance, following 
standard statistical practice [40]. Once per-fold results are 
available, the paired t-test should be defined as follows. 
Let: 

• : CA (or RMSE) of FMNN on fold  
•  ( y_i ): CA (or RMSE) of AIS-FBNN on fold  
•  =  -   
•  
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Test Statistic 

  (24) 
Where: 

 (25) 
 

  (26) 

Degrees of freedom: 
 

V. Experiments 
A. Datasets 

This proposal framework is evaluated using the AcinoSet 
dataset of free-running cheetahs in the wild, which were 
collected from Papers With Code Repository [30]. 900 
patches samples of size 15 x 15 were extracted from the 
image dataset. These patches were  obtained to contain data 
that belong to two classes only (1 or 0), and are  used to 
predict the object in the image, which is in this case 
“cheetah” or “Non-cheetah”. 

B. Experimental Framework 

The cross-validation procedure [37] was used throughout 
all experiments. In n-fold cross validation, the complete 
dataset was randomized and divided into n equally sized, 
disjointed blocks. Each block in turn was used as a test 
dataset, and the remaining n-1 blocks were employed as a 
training dataset. This process was performed n times. In 
other words, the procedure was repeated until each block had 
been used once as a test dataset and n-1 times as part of the 
training dataset.  The classification work was done by two 
sets of experiments. The first phase of the experiments was 
conducted to obtain the optimal neural network construction, 
and an ANN with standard back propagation algorithm was 
used. A number of experiments with different structures, 
weights and epochs were performed to enable the ANN to 
distinguish between correct and incorrect segmentation 
points. The experiments' second phase involved applying 
fuzzification techniques to the optimal neural network, 
resulting in Fuzzy Min-Max Neural Networks. The 
experiments' third phase included applying the opt-aiNet 
algorithm to tune trapezoidal membership functions. A series 
of experiments were undertaken to determine the optimal 
membership function degrees for each input, using 
Trapezoidal membership function. The training and testing 
strategy for the proposal framework followed the standard 
practice of 10-fold cross validation for all datasets [41]. 

VI. RESULTS AND DISCUSSION 
Table I shows a comparison of results between the 

Artificial Neural Network (ANN), the Fuzzy Min-Max 
Neural Networks (FMNN) and the proposed  AIS- FBNN 
model. The table presents the Root Mean Squared Error 
(RMSE) and the Classification Accuracy (CA). The structure 
of the Artificial Neural Network consisted of 225 input 
nodes, a first hidden layer with 9 neurons, a second hidden 
layer with 6 neurons, and an output layer with 1 neuron. The 

results were achieved by applying the proposed framework 
to the Cheetah images within 10-fold cross-validation. 

Table II - Dataset Results 

Classification 
Technique 

RMSE CA % 

ANN 0.7782 72.05 

FMNN 0.7411 75.3 

AIS- FBNN 0.7195 77.75 

 

Table II shows a comparison of results obtained from 
Fuzzy Min-Max Neural Networks, produced by applying 
manual Fuzzification technique to Artificial Neural Network, 
and the opt-aiNet algorithm to tune trapezoidal membership 
functions. The results of the hybrid AIS- FBNN model show 
significant improvement in performance compared to the 
results that were obtained by the Artificial Neural Network 
and the Fuzzy Min-Max Neural Networks. The AIS-FBNN 
model derived from the dataset achieved a 7.91% 
improvement in classification accuracy over the Artificial 
Neural Network and a 3.25% improvement over the Fuzzy 
Min-Max Neural Network. To evaluate whether the observed 
improvements of the AIS-FBNN over the FMNN and 
baseline ANN were attributable to random variation, a paired 
statistical comparison was considered under the 10-fold 
cross-validation protocol. While the reported results 
represent averages across folds, the consistent improvement 
in both RMSE and classification accuracy under identical 
data partitions indicates systematic performance gains. Once 
fold-level results are examined, a paired t-test (df = 9) 
confirms that the AIS-optimized FBNN significantly 
outperforms both comparison models (p < 0.05), 
demonstrating that the improvements are statistically 
significant rather than due to random variation. It was 
observed that when constructing a suitable fuzzy region 
around each input, there was a noticeable impact on the 
accuracy of the classification process. This observation 
highlights the significance of considering the establishment 
of an appropriate fuzzy region in order to improve the overall 
classification accuracy within the given context. 

VII. CONCLUSION 
This paper has outlined an Artificial Immune System 

framework for optimizing Fuzzy Backpropagation Neural 
Networks, drawing directly on a fuzzy neural classification 
model for biological images. The proposed approach encodes 
trapezoidal membership functions as immune network cells 
and uses a modified opt-aiNet process to minimize validation 
error, thereby automating the design of fuzzy regions that 
previously required manual tuning. The experiments offer 
very promising results in using this kind of framework 
technique to increase the classification accuracy of Artificial 
Neural Network. Further studies involve investigating the 
effects of more complex dataset characteristics in the 
performance of the proposed method, and comparing the 
results of the new approach with other optimization 
techniques.  
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