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Abstract--- According to the strategy of SC decoding where its 
performance is limited by the bit by bit decoding, correcting the 
bit that wrongly determined in the future decoding procedure 
becomes impossible. In this paper we proposed a new technique to 
correct wrongly determined bits in direct through decoding 
operations; the error propagation can also be directly corrected. 
The enhanced version of successive cancellation decoding is 
proposed to improve its performance for any code-length. This 
technique called multi-parallel SCD can provide a significant 
complexity reduction by avoiding unnecessary path searching 
operations. Furthermore, only undetectable bits (lost bits) over 
successive cancellation decoder are taken into consideration for 
path searching operations. The proposed algorithm that is applied 
into each decoder arranged directly over M-parallel SCD through 
processing operation by taking both possibilities in decision of 
wrongly determined bits (zero or one) . Multi-parallel SCD 
technique is a self-correcting path searching track that illustrate a 
significant decoding performance with low complexity over Binary 
Erasure Channel (BEC).  
 

Index Terms— Multi-Parallel SCD, polar coding, BEC. 

I. INTRODUCTION 
olar codes invented by Arikan [1] is the primary class of 
error correcting code that can provably achieve the capacity 
for any binary discrete memoryless channel (B-DMC) when 

the code length approach to infinity. The channel polarization 
on independent copies of a given B-DMC can achieve the 
capacity by performing channel splitting and channel 
combining operations. The channel reliabilities for constructing 
polar codes can be calculated efficiently using Bhattacharyya 
parameters over binary-input erasure channels (BECs) [1]. By 
transmitting free bits (called information bits) over these 
noiseless channels and by transmitting fixed bits (called frozen 
bits) over the others, polar codes can achieve the symmetric 
capacity under a successive cancellation (SC) decoder with 
both encoding and decoding complexities O(NlogN). Because 
subchannels are not completely polarized for finite length of 
polar codes, the error-correcting performance of successive 
cancellation (SC) decoding algorithm is poor at short and 
moderate block lengths. Much attention was especially given to 
efforts toward improving the throughput. The successive 
cancellation list (SCL) introduced in [2] is developed and shows 

 
 
 
 
 
 
 
 

 
significant performance improvement compared to SC 
decoding. 
In an SCL decoder, both 0 and 1 are considered as estimated 
bits and two decoding paths are generated at each decoding  
stage. The cyclic redundancy check (CRC) is used in [3, 4] to 
select the correct decoding path in the SCL algorithm. 
However, SCL decoding has much higher decoding complexity 
[5, 6]. Although much work has been done in the area of polar 
decoding in recent years [7–11], it is still an open issue to find 
a decoding algorithm with both good frame error rate (FER) 
performance and low complexity, especially with finite-length 
polar codes. 
This proposed algorithm is a generic SC decoding scheme with 
enhanced decision functions that applied in multi-SC decoders 
constructed in parallel to correct the lost bits that in turn leads 
to increase the error propagation. This technique can provide a 
flexible configuration. Further, self-correcting path searching 
track leads to Pruning unnecessary path searching operations, 
which reduce the decoding complexity. Multi-Parallel SC 
decoding show a significant performance improvement 
compared with the original SC decoding. 

II. PRELIMINARIES AND NOTATIONS 
 

Binary discrete memoryless channels (B-DMC) are an 
important class of channels studied in information theory and 
an important example of this kind of channels is the BEC, which 
is considered for illustrative purposes in this paper. The main 
idea of polar codes is to construct from N independent copies 
of a (B-DMC) W, a new set of 𝑁 channels𝑊!

(#) with 1 ≤ 𝑖 ≤ 𝑁 
using a linear transformation. The more 𝑁 increases, the more 
these new channels 𝑊!

(#) are polarized. In this paper we write 
𝑊:𝑋 → 𝑌 to denote a generic binary discrete memoryless 
channel (B-DMC) with input alphabet	𝑋, output alphabet 𝑌 and 
transition probabilities𝑊(𝑦|𝑥), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌. Considering a 
BEC, the input alphabet 𝑋 will always be a binary input {0, 1} 
while 𝑌 and the transition probabilities may be arbitrary. We 
write 𝑊!to denote the channel corresponding to 𝑁 independent 
uses of 𝑊; therefore, 𝑊!: 𝑋! → 𝑌!with 𝑊!(𝑦%!|𝑥%!) =
∏ 𝑊(𝑦#|𝑥#)!
#&% . Let 𝑦%! = (𝑦%, 𝑦', … , 𝑦!) be the observations of 
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the outputs bits 𝑥%! = (𝑥%, 𝑥', … , 𝑥!) through 𝑁 copies of the 
channel 𝑊 where the input bits are 𝑢%! = (𝑢%, 𝑢', … , 𝑢!). 
The mutual information of a B-DMC with input alphabet X =
{0,1} is defined as. 
 

𝐼(𝑊) ≜ 𝐼(𝑋; 𝑌) = **
1
2
𝑊(𝑦|𝑥)𝑙𝑜𝑔

𝑊(𝑦|𝑥)
1
2𝑊(𝑦|0) +

1
2𝑊(𝑦|1)!∈#$∈%

(1) 

 
Where X and Y are two discrete random variables 
corresponding to input and output, respectively, and W(y|x) is 
the channel transition probability for x ∈ X and y ∈ Y. 
The general mapping u%( → x%(can be written by induction and 
it represented by G( so that x%( = u%(G( and the transition 
probabilities of the two channels W(and W(are related by 
W((y%(@u%() = W((y%(@u%(G()	 for all y%( ∈ Y(, u%( ∈ X( where 
W((y%(@u%(G() is the vector channel which contains the 
transformation. 

A. Polar Encoding 
For (N, K) polar code of  K information bits and N encoded 

bits(N = 2)), an invertible matrix G( is introduced to describe 
channel polarization. Here, G( = B(F⊗) for N	 = 	2)	and	n	 ≥
	1, where B( is the bit-reversal matrix, ⨂n denotes the nth 
Kronecker product and F is defined as. 

F ≜ J1 0
1 1K 

And  B( can be found by using B( = R( MI'⊗B!
"
P 

Where I' is the 2-D identity matrix, B' is initialized as B' = I' 
, R( is the permutation operation which maps the input 
sequence {1,2,3,4, … . . , N} to {1,3, … . , N − 1	,2,4, … , N} and 
n = log' N. The generator matrix in such structure of the 
encoder shown in figure (1) for N=4 will be  

G+ = X
1 0
1 0				

0 0
1 0

1 1
1 1				

0 0
1 1

Y 

The main idea of the transformation in the polar encoder is 
to create a set of channels with capacity C → 1 for N goes to 
infinity. The information bits send to the channels that are 
almost free of noise and the remaining (N − K) is frozen bits 
that are transmitted in the noisy channels. This process can be 
accomplished using Bhattacharyya parameter which is always 
takes the values between 0 and 1 and it denoted by Z(W). 
Whereas the channels with Z(W) close to zero are almost 
noiseless, while channels with Z(W) close to one are almost 
noisy channels. As shown in figure.1, the Bhattacharyya 
parameters of individual bit-channels in the polar 
transformation can be calculated by the following recursive 
formulas, when W is a BEC with erasure probability ϵ, 
where	Z\W%

(%)] = ϵ. 

𝑍\𝑊!
('#,%)] = 2𝑍 `𝑊!

'

(#)a − 𝑍 `𝑊!
'

(#)a
'

(2) 

𝑍\𝑊!
('#)] = 𝑍(𝑊!

'

(#))' (3) 

 
Due to the recursive structure of polar encoding and 

decoding, the complexity of polar codes is the most important 
issue. The complexity of the SC decoder is the same as encoder 
namely O(N	logN). Let us first consider the encoding 
complexity. The encoding is done layer by layer for n	 = 	logN 
within the recursive channel combining operation. Let 
E𝜒(N)	denote the encoding complexity for blocklength	N.  

 

E𝜒(N) =
𝑁
2 + 2E𝜒

(𝑁 2⁄ ) (4) 

 
For instance when blocklength (N = 2), the encoding 
complexity is Eχ(2) = 1 because of just one XOR operation is 
needed to compute u-%	G'. The above recursive relation implies 
 

E𝜒(N) =
𝑁
2 + 2E𝜒

(𝑁 2⁄ ) =
𝑁
2 + 2(𝑁 4⁄ + 2E𝜒(𝑁 4⁄ )) 

=
𝑁
2 +

𝑁
2 + 4\𝑁 8⁄ + 2E𝜒(𝑁 8⁄ )] =

𝑁
2 𝑙𝑜𝑔𝑁

(5) 

 
 
B. Successive Cancellation Decoding 

At the receiver side, the original transmitted codeword x. is 
corrupted because of noise interference to the received 
codeword y%( = (y%, y', … , y(). After receiving y%( the bits um. 
are  determined successively with index i from 1 to N by using 
the likelihood ratio (LR) of y.. In this paper Binary Erasure 
Channel model is depicted, where information may be lost but 
is never corrupted. A transmitted bit is either received correctly 
with probability (1 − ϵ) or known to be lost with probability ϵ. 
The likelihood ratio (LR) of y. according to original transmitted 
codeword x. = {0	or	1	or − 1} will be  y. =
{high	or	low	or	1} respectively. As shown in fig.2, the LR-
values from the f-function in (6) depend only on LR-values of 
nodes a , b and LR values calculated with the g-function in (7) 
are in addition to that also influenced by the result from the f-
function.    

 

 
Fig. 1. Bhattacharyya parameter distributions for Polar Encoder, N=4. 
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f(LR/, LR0) =

LR/LR0 + 1
L1/ + LR0

(6) 

g(u., LR/, LR0) = LR0. LR/
(%,'2#) (7) 

 
Where LR/, LR0 are the likelihood ratios of received codeword 
y%(. 
The formulas in (6) and (7) are expressed in a recursive manner 
in [1] as 

 
L(
('.,%)\y%(, um%'.,'] = 

=
3!
"

(#)45&

!
" ,27&,(

"#)"⨁27&,*
"#)"93!

"

(#)45!
"+&
! ,27&,*

"#)"9:%

3!
"

(#)45&

!
" ,27&,("#)"⨁27&,*"#)"9:3!

"

(#)45!
"+&
! ,27&,*"#)"9

(8) 

And 
L(
('.)\y%(, um%'.,%] = 

= vL(
'

(.) `y%
(
' , um%,;'.,'⨁um%,<'.,'ax

%,27"#)&

. L(
'

(.) `y(
':%
( , um%,<'.,'a (9) 

The decision made using 

𝑢m# = z0, 𝑖𝑓		𝐿𝑅(𝑢#) ≥ 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒						 (10) 

 

 
 

It can be seen that in Figure (3) the tree structure of SC 
decoder consists of two types of computation units with bit 
distribution over SC decoding procedure for N=8 polar codes. 
Here the decoder consists of two basic nodes, namely f node 
and g node, note that g node can be (0 or 1) according to the 
previous decoded bit, the operations of these two nodes are 
distributed only for estimate the first data bit where the g-node 
in level (1 and 2) are activated. 

III. PROPOSED M-PARALLEL SC DECODING ALGORITHMS 
According to the strategy of SC decoding where its 

performance is limited by the bit by bit decoding, correcting the 
bit that wrongly determined in the future decoding procedure 
becomes impossible. In this paper, we proposed a technique to 
correct the bits that are wrongly determined in direct through 
decoding operation. The enhanced version of successive 
cancellation decoding is proposed to improve its performance 
for any code-length. The block diagram shown in figures (4.a 
and 5.a) called multi-parallel SCD where M=(2 and 4) 
respectively can provide a significant complexity reduction by 
avoiding unnecessary path searching operations.  

 

 

 

 
Fig..2. Likelihood ratio (LR) calculation over Kernel decoder unit 
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Fig. 3. Bits distribution over SC decoding procedure for N=8. 
 
  

 

 
 

Fig.4.a. Block diagram for M=2 parallel SC decoding operation. 
 
   

 
 

Fig.5.a. Block diagram for M=4 parallel SC decoding operation. 
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The algorithm that is applied into each SCD arranged directly 
over M-parallel SCD through processing operation, by taking 
all possibilities decision of undetected bits (zero or one). For 
M=2, the decision operation for the decoder (1,2) are depicted 
as in (11.a,11.b) respectively, and this procedure are applied for 
all bits that are wrongly determined which have LR = 1. 

 

𝑢m#(𝐷1) = z0, 𝑖𝑓		𝐿𝑅(𝑢#) ≥ 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒						 (11. a)   

𝑢m#(𝐷2) = z1, 𝑖𝑓		𝐿𝑅(𝑢#) ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒						 (11. b)  

Unlike to the SC decoder where only one path is reserved 
after processing at each level, the m-parallel algorithm utilizes 
M different searching paths as shown in figures (4.b and 5.b). 
Therefore, it is more likely for the m-parallel algorithm to find 
the desired path than the SC algorithm. Instead of waiting to 
find out all the M candidate paths at every level, we can thus 
keep on searching along the single candidate path in each 
decoder. For M=4, the decision operation for the decoder (1,3) 
are depicted as in (11.a,11.b) respectively, therefore for M=4, 
two more decoders are added with specific decision operation 
in each decoder as in (11.c,11.d) and this procedure are also 
applied for all bits that are wrongly determined which have 
LR = 1. 

 𝑢m#(𝐷3) = z0, 𝑖𝑓		𝐿𝑅
%=>(𝑢#) = 1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒						 .  (11.c) 

 𝑢m#(𝐷4) = z1, 𝑖𝑓		𝐿𝑅
%=>(𝑢#) = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒						 .  (11.d
) 

 

 

A multi-parallel decoder keeps track of several decoding 
results instead of just one, in fact for M = 1we obtain the SC 
again. Instead of deciding to set the value of u., it takes both 
options. Since for each information bit it splits the decoding 
path into two new paths (one ends with "0" and the other ends 
in "1"), in figure (4.b and 5.b) we prune unnecessary path 
searching and the maximum number of paths allowed is M. In 
order to keep the best paths at each stage, the pruning criterion 
will be to keep the most likely paths. Let us try now to make an 
example just for the first tree bits and M = 2 into two cases, in 
case(a), where the 1?@, 	2)A	and	3CA	 bits are lost as shown in 
figure (6.a) and case (b), where the 1?@and	3CA	bits are lost but 
the 	2)A	bit is normally detected as 1, as shown in figure (6.b). 

 

 
 
We assume N = 8. First, the decoding algorithm starts and 

the first bit can be either 0 or 1. In the case (a) the 
1?@, 	2)A	and	3CA	bits assumes to be either zeros or ones thus the 
possible words are {000,111} but the number of paths is not 
greater than M = 2 , in this case just the first bit can be exactly 
correct and this is the worst case. However in case (b), M=2 
where the 1?@and	3CA	 bits are lost but the 	2)A	bit is normally 
detected as 1. The possible words will be {010,111}, hence the 
first and second bits are true, but the third bit can be true with 
probability =0.5. As seen in this case the path searching is 
changed with self-correcting track. Finally the most likely path 
which has the highest logarithmic likelihood decoding will be 
chosen. 

 

 
Fig.4.b. Tree structure for M=2 parallel SC decoding operation. 

  
 

 
Fig.5.b. Tree structure for M=4 parallel SC decoding operation. 

 
  

 

 
Fig.6.a. Decoding procedure in case (a), where the 1&', 	2()	and	3+)	  

bits are lost 
. 

 
  

 
Fig.6.b. Decoding procedure in case (b), where the 1&'and	3+)	 bits are lost 

but the 	2()	bit is normally detected as 1. 
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Now let us increase M=4 as shown in figures (7.a and 7.b) to 
the same previous example cases. As clearly seen in case (a) the 
possible words are {000,011,100,111} and the number of paths 
is not greater than M = 4. In case (b), M=4 where the 
1?@and	3CA	 bits are lost but the 	2)A	bit is normally detected as 
1. The possible words will be {010,011,110,111}. As seen in 
this case the path searching is changed with self-correcting 
track. The most likely path that has the highest logarithmic 
likelihood decoding will be chosen. 

 

III. SIMULATION RESULTS 
As for the implementation aspect, simulation results for 

binary erasure channels with erasure probability 0.5 in terms of 
bit error rate BER and frame error rate FER for short and 
moderate frame lengths are used. The cyclic redundancy chick 
CRC is also applied, the code rate of all simulations in this 
paper include the CRC bits. As clearly seen that the decoding 
performance of improved version of SCD namely M-parallel 
SCD compared with the original SC decoding algorithm, have 
a significant improvement as much as M increased.  

 

 

 

 

 
Fig.7.a. Decoding procedure in case (a), where the 1&', 	2()	and	3+)	bits 

are lost. 
 

 
  

 

 
Fig.7.b Decoding procedure in case (b), where the 1&'and	3+)	 bits are lost 

but the 	2()	bit is normally detected as 1. 
. 

 
  

 
Fig. 8. BER performance under different M size for frame- length P(1024) 

over Binary Erasure Channel. 
 
 
 
 
 
  

 
Fig. 9. FER performance under different M size for frame- length P(1024) 

over Binary Erasure Channel. 
 

 
 
 
  

 
Fig. 10. BER performance under different M size for frame- length P(128) 

over Binary Erasure Channel. 
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IV. CONCLUSION 
The SC decoding algorithm of polar codes and its improved 

versions, namely, M-parallel SC decoding is restated as path 
search procedures on the code tree of polar codes. This 
technique can avoid unnecessary path searching and has an 
ability of self-correcting path searching track when the wrongly 
determined bits are not consecutively ordered. The number of 
searching paths can be greatly reduced based on the proposed 
scheme. So, the time and space complexities of M-parallel SC 
decoding are 𝑂(𝑁	𝑙𝑜𝑔𝑁) and less than or equal to 𝑂(𝑀.𝑁), 
compared with the original SC complexity of  𝑂(𝑁	𝑙𝑜𝑔𝑁) and 
𝑂(𝑁) respectively. 
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