Calculation of the values of the constants of Pelofsky's equation and comparison with their practical values for certain polymer solutions

Najla Ali Elgheryani. Physics Department, Faculty of Education, University of Benghazi Benghazi , Libya nagla.elgerani@uob.edu.ly https://orcid.org/0000-0002-3379-5001

Abstract— This study investigates the applicability of Pelofsky's equation to nine polymer aqueous solutions, including Carboxymethyl cellulose, Polyanionic cellulose, Polyacrylamide, Polyvinylalcohol, Polyvinylpyrrolidone, and polyethylene glycol with varying molecular weights. The viscosity and surface tension of these solutions were experimentally determined. The constants A and B of Pelofsky's equation were calculated, but the predicted values did not match the experimental results obtained from the slope of the Ln(χ) graph. This discrepancy is attributed to the empirical nature of the equation. Future research can explore the applicability of Pelofsky's equation to a broader range of polymer solutions and examine its compatibility with the relationship between viscosity and surface tension

Keywords— surface tension, viscosity, Pelofsky's equation, polymer solutions, correlations..

I. Introduction

The physical properties of polymers depend on their molecular weight and physical structures. [1] Polymers are distinguished by the arrangement of the repeating units. A polymer formed from a single monomer is a homogeneous polymer, and if it contains several monomers it is a copolymer. These include random, alternating, block and graft polymers. [1] The viscosity of polymers play an important role in the production, processing and application of it. [2] Polymers generally have high viscosity.[2] The viscosity of the polymer solution depends on the length scale of flow. When the length scales smaller than the polymer coil size, the viscosity is close to that of the solvent. [3] The viscosity of polymer solutions is important for polymer synthesis and recycling. Polymerization reactions can be hampered by diffusional limitations once a viscosity threshold is reached, and viscous solutions complicate cleanup steps during the dissolution-precipitation technique. [4] Surface tension is a characteristic property of liquids. This phenomenon is due to the force of attraction between the molecules on the surface. [5] The surface tension of solutions is an important physical and chemical property of surfactant molecules, different methods are used to determine it depending on the time scale of surface tension decay appropriate for the particular application. [6] Viscosity is the measure of friction in the fluid, and closely related to surface tension, but surface tension is the tendency of the fluid to stretch due to the attractive forces between molecules. [7] The relationship between surface tension and viscosity is conceptually important and can be used to test the validity of measured data. [8] Chideme et al. The effect of fluid

properties - viscosity, surface tension - and air pressure on the mean Sauter diameter of evaporating nozzles using a dual liquid evaporator was studied, and equations were derived that quantify these effects across a range of fluid behaviors, with emphasis on viscous and non-viscous fluids. [9] Mahdiye et al. demonstrate that a classic method for measuring the surface tension of liquid droplets, based on the analysis of the shape of a sessile droplet, can be effectively scaled down to measure the interfacial tension between a macromolecule-rich droplet phase and its co-existing macromolecule-poor continuous phase. The connection between droplet shape and surface tension relies on the density difference between the droplet and its surroundings. This can be determined with small sample volumes in the same setup by measuring the droplet sedimentation velocity. An interactive mat lab script for extracting the capillary length from a droplet image is included in the ESI. [10] Shao et al. A method for obtaining the elasticity, surface tension, and viscosity of ultrasonically levitated gel drops is presented. A method is described for obtaining elasticity, surface tension, and viscosity, and the method is experimentally demonstrated for surface tension and viscosity. [11]

A. The theory

This study relies on several theoretical concepts, including:

1) Surface tension: 1. The surface tension (γ) of a solution is related to the mass (m) of a drop through the equation(1): [12]

$$m g = 2\pi r \gamma$$
 (1)

where g is the acceleration due to gravity (9.8 m/s^2) and r is the radius of the wetted tip.

2) *Viscosity:* Viscosity: The viscosity of a solution is related to its flow time through the Poiseuille equation:(2): [13]

$$\Pi = \frac{\pi \, \Delta P \, r^4 \, t}{8 \, V \, L} \tag{2}$$

DOI: 10.5281/zenodo.15376356

where η is the coefficient of viscosity, t is the flow time, V is the volume of liquid, ΔP is the pressure change, and L is the length of the viscometer.

3)Viscosity-surface tension correlations: Pelofsky's equation proposes a relationship between viscosity (I]) and surface tension (γ), which is shown in the following equation(3): [14, 15]

$$Ln \gamma = Ln A + \frac{B}{\eta}$$
(3)

Where A and *B* are substance-dependent constants, [15] that can be determined through fitting coefficients Ln A and B. [14]

B. Materials and Methods:

1) Materials: The study used various polymers, including Carboxymethyl cellulose (CMCHV, CMCLV) and Polyanionic cellulose (PAC LV) provided by National Corporation Jowfe Oil Technology, and Polyacrylamide (PMA), Polyvinylalcohol (PVA), Polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) with different molecular weights (Mw 8000, Mw 10000, Mw 12000) supplied by Sigma-Aldrich GMBH.

2) Samples preparation: Two solutions of each polymer with different concentrations (19%, 31%, 43%, 55%) were prepared by dissolving them in distilled water with stirring at room temperature (24° C)

3) Measurements & calculations

a) Surface tension: The surface tension was calculated using the droplet shape method and equation (1), which relates the mass of the droplet to the surface tension. [12]

b) Viscosity: The viscosity was calculated from the flow time measured using a glass viscometer and equation (2).13]

c) Viscosity-surface tension correlations: The constants A and B were calculated using equation (3), which represents the empirical relationship between viscosity and surface tension proposed by Pelofsky. [16]

4) Results and discussion:

The results are presented in Tables (1) and (2), which show the calculated values of surface tension and viscosity for the different polymer solutions. The PEG samples were separated in Table (2) to examine the effect of molecular weight on the constants A and B. The results indicate that the change in molecular weight of PEG does not have a clear relationship with the change in the constants A and B.

Table.1ValuesMeasurementsandcalculationsfromparagraph (3)

% CMCHV 19 0.3352 151.3851 31 0.4369 191.894 0.131434 - 43 0.6866 353.0556 141.7294 55 0.7362 948.4181 - CMCLV 19 0.3543 102.6536 0.158904 - 31 0.38815 116.4905 82.31158 - 43 0.4618 153.3044 - 82.31158 43 0.4618 153.3044 - 82.31158 43 0.4618 153.3044 - 81.56331 43 0.4618 153.3044 - 81.56331 43 0.2466 96.4539 0.013028 - 81 0.2466 96.4539 81.56331 - 43 0.3469 181.3672 81.56331 - 9VA 19 0.1493 70.50695 0.143833 -2.62974 41 0.1529	Polymer	С	Y	η	А	В
CMCHV 19 0.3352 151.3851		%				
31 0.4369 191.894 0.131434 - 43 0.6866 353.0556 141.7294 55 0.7362 948.4181 1 CMCLV 19 0.3543 102.6536 0.158904 - 31 0.38815 116.4905 82.31158 82.31158 43 0.4618 153.3044 - 82.31158 43 0.4618 153.3044 - 82.31158 43 0.4618 153.3044 - 81.56331 9ACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 - 81.56331 43 0.3469 181.3672 - 81.56331 55 0.39324 268.0771 - - PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1534 251.2232 - - - PVP 19 0.04531 8.8004 0.012299	CMCHV	19	0.3352	151.3851		
43 0.6866 353.0556 141.7294 55 0.7362 948.4181 - CMCLV 19 0.3543 102.6536 0.158904 - 31 0.38815 116.4905 82.31158 82.31158 43 0.4618 153.3044 - 82.31158 43 0.4618 153.3044 - 82.31158 43 0.4618 153.3044 - 81.56331 PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 81.56331 - 43 0.3469 181.3672 81.56331 - 43 0.3469 181.3672 - - 9VA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.15402 426.3841 - - - 9VP 19 0.04531 8.8004 0.01		31	0.4369	191.894	0.131434	-
55 0.7362 948.4181 CMCLV 19 0.3543 102.6536 0.158904 - 31 0.38815 116.4905 82.31158 43 0.4618 153.3044 - 55 0.6274 357.2573 - - PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 - 81.56331 43 0.3469 181.3672 - 81.56331 43 0.3469 181.3672 - - 9VA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - 43 0.1534 251.2232 - - 55 0.15402 426.3841 - - PVP 19 0.04531 8.8004 0.012299 - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641		43	0.6866	353.0556		141.7294
CMCLV 19 0.3543 102.6536 0.158904 - 31 0.38815 116.4905 82.31158 43 0.4618 153.3044 82.31158 55 0.6274 357.2573 - PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 - 81.56331 43 0.3469 181.3672 - 81.56331 43 0.3469 181.3672 - 81.56331 43 0.3469 181.3672 - - 90 0.1493 70.50695 0.143833 -2.62974 11 0.1529 187.1298 - - 43 0.1534 251.2232 - - 55 0.15402 426.3841 - - 9VP 19 0.04531 8.8004 0.012299 - 31 0.09641 20.9054 - 11.47598 43 0.014624 <td></td> <td>55</td> <td>0.7362</td> <td>948.4181</td> <td></td> <td></td>		55	0.7362	948.4181		
31 0.38815 116.4905 82.31158 43 0.4618 153.3044 82.31158 55 0.6274 357.2573 81.56331 PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 81.56331 - 43 0.3469 181.3672 81.56331 - 55 0.39324 268.0771 - - PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641 20.9054 - - 11.47598 55 0.11631 31.7631	CMCLV	19	0.3543	102.6536	0.158904	-
43 0.4618 153.3044 55 0.6274 357.2573 PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 81.56331 43 43 0.3469 181.3672 55 81.56331 43 0.3469 181.3672 55 0.39324 268.0771 PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - - 31 0.0905 18.7452 11.47598 11.47598 - - 43 0.09641 20.9054 0.05696 -8.1538 - - PAM 19 0.14624 8.6471 0.05696 -8.1538		31	0.38815	116.4905		82.31158
55 0.6274 357.2573 PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 81.56331 43 0.3469 181.3672 81.56331 55 0.39324 268.0771 - PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - 31 0.09641 20.9054 - 11.47598 43 0.09641 20.9054 - - PAM 19 0.14624 8.6471 0.05696<		43	0.4618	153.3044		
PACLV 19 0.1745 65.4085 0.013028 - 31 0.2466 96.4539 81.56331 43 0.3469 181.3672 81.56331 55 0.39324 268.0771 - PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641 20.9054 11.47598 - 55 0.11631 31.7631 - - - PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 - - - 43 0.2714		55	0.6274	357.2573		
31 0.2466 96.4539 81.56331 43 0.3469 181.3672 81.56331 55 0.39324 268.0771 268.0771 PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641 20.9054 - 11.47598 55 0.11631 31.7631 - - PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 - - - 43 0.2714 23.01889 - - - 55 0.3371 75.6228 </td <td>PACLV</td> <td>19</td> <td>0.1745</td> <td>65.4085</td> <td>0.013028</td> <td>-</td>	PACLV	19	0.1745	65.4085	0.013028	-
43 0.3469 181.3672 55 0.39324 268.0771 PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641 20.9054 - 11.47598 55 0.11631 31.7631 - - PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 - - - 43 0.2714 23.01889 - - - 55 0.3371 75.6228 - - -		31	0.2466	96.4539		81.56331
55 0.39324 268.0771 PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641 20.9054 - 11.47598 55 0.11631 31.7631 - - PAM 19 0.14624 8.6471 0.05696 - 31 0.1841 10.2541 - - - 43 0.2714 23.01889 - - - 55 0.3371 75.6228 - - -		43	0.3469	181.3672		
PVA 19 0.1493 70.50695 0.143833 -2.62974 31 0.1529 187.1298 - - - 43 0.1534 251.2232 - - - 55 0.15402 426.3841 - - - PVP 19 0.04531 8.8004 0.012299 - 31 0.0905 18.7452 11.47598 11.47598 43 0.09641 20.9054 11.47598 11.47598 55 0.11631 31.7631 - - PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 - - - 43 0.2714 23.01889 - - - 55 0.3371 75.6228 - - -		55	0.39324	268.0771		
31 0.1529 187.1298 43 0.1534 251.2232 55 0.15402 426.3841 PVP 19 0.04531 8.8004 31 0.0905 18.7452 43 0.09641 20.9054 55 0.11631 31.7631 PAM 19 0.14624 8.6471 43 0.2714 23.01889 55 0.3371 75.6228	PVA	19	0.1493	70.50695	0.143833	-2.62974
43 0.1534 251.2232 55 0.15402 426.3841 PVP 19 0.04531 8.8004 31 0.0905 18.7452 43 0.09641 20.9054 55 0.11631 31.7631 PAM 19 0.14624 8.6471 0.05696 31 0.2714 23.01889 - 55 0.3371 75.6228 -		31	0.1529	187.1298		
55 0.15402 426.3841 PVP 19 0.04531 8.8004 0.012299 31 0.0905 18.7452 11.47598 43 0.09641 20.9054 11.47598 55 0.11631 31.7631 - PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 - - 43 0.2714 23.01889 - - 55 0.3371 75.6228 - -		43	0.1534	251.2232		
PVP 19 0.04531 8.8004 0.012299 - 31 0.0905 18.7452 11.47598 43 0.09641 20.9054 11.47598 55 0.11631 31.7631 - PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 - - - 43 0.2714 23.01889 - - - 55 0.3371 75.6228 - - -		55	0.15402	426.3841		
31 0.0905 18.7452 11.47598 43 0.09641 20.9054 11.47598 55 0.11631 31.7631 11.47598 PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 43 0.2714 23.01889 11.47598 55 0.3371 75.6228 11.47598 11.47598 11.47598	PVP	19	0.04531	8.8004	0.012299	-
43 0.09641 20.9054 55 0.11631 31.7631 PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 43 0.2714 23.01889 -8.1538 55 0.3371 75.6228 - - - -		31	0.0905	18.7452		11.47598
55 0.11631 31.7631 PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541 43 0.2714 23.01889 55 0.3371 75.6228		43	0.09641	20.9054		
PAM 19 0.14624 8.6471 0.05696 -8.1538 31 0.1841 10.2541		55	0.11631	31.7631		
310.184110.2541430.271423.01889550.337175.6228	PAM	19	0.14624	8.6471	0.05696	-8.1538
43 0.2714 23.01889 55 0.3371 75.6228		31	0.1841	10.2541		
55 0.3371 75.6228		43	0.2714	23.01889		
		55	0.3371	75.6228		

	Table, 2 Values Measurements and calculations fro
--	---

paragraph (3) for PEG`s

MW	С	Y	η	А	В
	%				
8,000	19	0.13256	3.4461	0.02991	-5.1309
	31	0.15292	3.8		
	43	0.1841	4.4056		
	55	0.2023	4.8124		
10,000	19	0.09532	2.97978	0.03960	-2.61719
	31	0.1217	4.1564		
	43	0.1529	6.5194		
	55	0.1626	7.6024		
12,000	19	0.1246	2.7633	0.004418	-9.22756
	31	0.1841	3.1291		
	43	0.2466	3.4734		
	55	0.2864	3.68065		

a) Surface tension: The values of the surface tension coefficient given in Tables (1) and (2) were calculated for all samples using equation (1) after obtaining the weight of the solution drops using the drop method.

b) Viscosity: Using equation (2), the viscosity coefficient was calculated as a function of the flow time measured in the experiment and the results were recorded in tables (1) and (2).

Viscosity-surface tension correlations: From c)equation (3), the values of A and B were calculated for both samples and the results were recorded in tables (1) and (2). The equation (3) is a relationship between surface tension and viscosity. It can be applied to purely organic and inorganic fluids and mixtures.[16] Belowski and Schonhorn suggested that A which is the intercept of the curve in the relationship between the inverse of the viscosity coefficient and the logarithm of the surface tension coefficient [17] could be an indicator of the surface tension of the liquid at the temperature where $\eta = \infty$ They attempted to find a correlation between the temperature where $\eta \to \infty$ and the homogeneous crystallization temperature.[8] When plotting $\frac{1}{\eta}$ versus Ln(γ), the slope of the line indicating the inverse relationship is the value of the constant B.[8,18] The relationship between the inverse of the viscosity coefficient and the logarithm of the surface tension coefficient for all samples is shown in figure (1) and from there the slopes of

the lines in the figure represents the experimental values of

Fig. 1 The relationship between the coefficient of the viscosity coefficient and the logarithm of the surface tension coefficient.

Table.3 The constant B is equal the slope of the l	lines
in the figure (1).	

Polymers	А	В
CMCHV	-2.5	-7.69942
CMCLV	-0.39	-99.2178
PACLV	-0.7	-144.447
PVA	-1.865	-7.89175
PVP	-2.1	-7.18629
PAM	-1.0	-7.89175
PEG(Mw= 8,000)	-0.49	-5.1348
PEG(Mw= 10,000)	-1.4	-2.61111
PEG(Mw= 12,000)	0.00	-9.22742

The calculated values of constants A and B using Equation (3) in Tables (1) and (2) were compared with the values obtained from Figure (1) in Table (3). For constant B, significant differences were observed for CMCHV, CMCLV, and PACLV, while the values were close for PEG with molecular weights of 8000, 10000, and 12000. However, large discrepancies were found for constant A in all cases. These differences may be attributed to the empirical nature of Equation (3). [19, 20].

Conclusions

In conclusion, this study measured the surface tension and viscosity of aqueous polymer solutions to calculate the constants A and B of Pelofsky's equation, which relates surface tension and viscosity. However, the calculated values did not match those obtained from the slope of the Ln(y) vs. plot, likely due to the empirical nature of the equation. While Pelofsky's equation may not provide a perfect fit, it can still be applied to various polymer solutions to explore its compatibility with the relationship between viscosity and surface tension. Further research can investigate the equation's applicability and potentially provide physical meaning to the constants, particularly the slope B, which Pelofsky correlated with molecular weight for certain polymer

Acknowledgment

I would like to extend my sincere gratitude to the team at Jowfe Oil Technology, National Petroleum Corporation, for their support in conducting this research. Special thanks to Mr. Mohammad Boujerda and Mr. Jamal Mohammad Al-Farjani for their valuable contributions REFERENCES

- [1] W. Fang Su," Principles of Polymer Design and Synthesis" Springer Berlin Heidelberg. First Edition, 2013. https://www.google.com.ly/books/edition/Principles_of_Polymer_De sign_and_Synthes/02m4BAAAQBAJ?hl=en&gbpv=1&pg=PR3&pri ntsec=frontcover
- [2] L. Cheng, W. Fan, Y. Ji," Thermodynamic modelling procedure for modelling viscosity of polymer solutions", Fluid Phase Equilibria, Volume 572, 2023, 113848. https://doi.org/10.1016/j.fluid.2023.113848
- [3] A. Agasty, A. Wisniewska, T. Kalwarczyk, K. Koynov, and

R. Holyst," Macroscopic Viscosity of Polymer Solutions from the Nanoscale Analysis", ACS Appl. Polym. Mater. 2021, 3, 2813–2822

- [4] R. Kol, P. Nachtergaele, T. De Somer, D. R. D'hooge, D. S. Achilias, and S. De Meester", Toward More Universal Prediction of Polymer Solution Viscosity for Solvent-Based Recycling", Ind. Eng. Chem. Res. 2022, 61, 10999–11011. https://doi.org/10.1021/acs.iecr.2c01487
- [5] S.M. Alazrak, S.Awad, A.A.Khalil, and W. El-Dougdoug," Synthesis and Evaluation of New Cationic Polymeric Surfactant Based on Nphthalimidomethy methacrylate", Egyptian Journal of Chemistry Vol. 64, No. 7 pp. 3861 - 3872 (2021). DOI: 10.21608/EJCHEM.2021.54791.3224
- [6] J. Venzmer," Determination of Surface Tension of Surfactant Solutions from a Regulatory Perspective", SOFW Journal, Volume 149, p. 32-39, 2023.

https://www.tegewa.de/wp-content/uploads/2023/11/Determination-of-Surface-Tension-of-Surfactant-Solutions-from-a-Regulatory-Perspective.pdf

- [7] E. Rusyaman, K. Parmikanti, D. Chaerani, K, Rohadatul A, Muslihin," Viscosity Analysis of Lubricating Oil Through the Solution of Exponential
- Fractional Differential Equations", Mathematics and Statistics 10(1): 134-139, 2022.

DOI: 10.13189/ms.2022.100110

- [8] H. Ahmari and M. C. Amiri," On the relationship between surface tension and
- viscosity of fluids", Chemical Engineering Research Bulletin 18(2015) 18- 22.

DOI: 10.3329/cerb.v18i1.26217

- [9] N. Chideme and P. de Vaal," Effect of Liquid Viscosity and Surface Tension on the
- Spray Droplet Size and the Measurement Thereof," Journal of Applied Fluid

Mechanics, Vol. 17, No. 12, pp. 2652-2672, 2024. https://doi.org/10.47176/jafm.17.2.2532

M. Ijavi, R. W. Style, L. Emmanouilidis, A. Kumar, S. M. Meier, A. L. Torzynski, F.d.H. T. Allain, Y. Barral, M. O. Steinmetz and E. R. Dufresne," Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method", The Royal Society of Chemistry, 17, 1655-1662, 2021, DOI:10.1039/d0sm01319f

[11] X. Shao, S. A. Fredericks, J. R. Saylor, and J. B. Bostwick," A method for determining surface tension, viscosity, and elasticity of gels via ultrasonic levitation of gel drops", Acoustical Society of America, 147 (4), 2020 2488–2498. https://doi.org/10.1121/10.0001068

https://doi.org/10.1021/acsapm.1c00348

[12] R. P. Woodward," Surface Tension Measurements Using the Drop Shape Method", scribd, 2021.

https://repository.unsri.ac.id/9385/1/Surface_tension_measurement_usin g_drop_shape_mth.pdfhttps://www.scribd.com/document/545617546/05

- [13] M. Maheshwar," A review article on measurement of viscosity", international journal of research in pharmacy and chemistry, 2018, 8(1), 69-77. <u>https://www.ijrpc.com/files/13-01-18/08.pdf</u>
- [14] Mircea Oroian," Measurement, prediction and correlation of density, viscosity, surface tension and ultrasonic velocity different honey types at different temperatures", Journal of food engineering, 119. 167- 172, 2013. https://www.scribd.com/document/489614174/Measurementprediction-and- correlation-of-density-viscosity-surface-tension-andultrasonic-velocity-ofdifferent-honey-at-different-temperatu
- [15] K.S.Kumar, S.; Nagpal, P.K.Sharad, R. G. Salunkhe, Sachin," Development of the Al SiCuFe Alloy Foam Composites with ZrSiO Reinforcements at Different Foaming Temperatures", Metals; Basel,13.685, 2023. DOI:10.3390/met13040685
- [16] Mengmeng Zheng, Jianxiang Tian, Ángel Mulero," New Correlations between Viscosity and Surface Tension for Saturated Normal Fluids", Fluid Phase Equilibria, Volume 360, pp. 298-304. DOI:10.1016/j.fluid.2013.09.045 https://doi.org/10.48550/arXiv.1606.09105
- [17] C. G. Kolb, M. Lehmann, D. Kulmer, M. F. Zaeh," Modeling of the stability of water-based graphite dispersions using polyvinylpyrrolidone on the basis of the DLVO theory", Heliyon 8 (2022) e11988. <u>https://doi.org/10.1016/j.heliyon.2022.e11988</u>
- [18] A.J. Queimada, I.M. Marrucho, E.H. Stenby, J.A.P. Coutinho," Generalized relation between surface tension and viscosity: a study on pure and mixed *n*-alkanes", Fluid Phase Equilibria 222–223 (2004) 161–168. https://doi.org/10.1016/j.fluid.2004.06.016
- [19] G. D. Nicola, M. Pierantozzi, S. Tomassetti, G.Coccia, "Surface Tension Calculation from Liquid Viscosity Data of Silanes", Fluid Phase Equilibria, 23, 2018. DOI: 0.1016/j.fluid.2018.01.005
- [20] M. A. Taye," Dynamics of blood cells during a routine laboratory examination", arXiv, 2023. DOI: <u>10.48550/arXiv.2301.10124</u>