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1. INTRODUCTION 

 Addressing uncertainty, imprecision, and incomplete 
information is a key challenge in mathematics, logic, and 
computer science. This has led to the creation of models that 
handle ambiguity, such as Fuzzy Sets [1], Rough Sets [2], and 
Soft Sets [3], each offering unique approaches to managing 
uncertainty, with varying degrees of flexibility for complex 
data. 

Fuzzy and rough set theories laid the groundwork for 
dealing with vagueness and approximation. However, soft set 
theory, introduced by Molodtsov in 1999, provides greater 
flexibility through its parameterized structure, making it 
especially suitable for decision-making under incomplete 
data. Subsequent work significantly expanded the theory. 
Studies [4-6]. introduced and refined algebraic operations like 
union, intersection, and complement, resolving 
inconsistencies and extending functionality. Applications in 
decision-making were further developed through parameter 
reduction and uncertainty-handling technique [7-10]. 
Moreover, soft set theory has been unified with other models, 
with fuzzy and rough sets treated as special cases [11], and 
extended into areas such as fuzzy soft sets [12] and soft graph 
theory [13], broadening its impact in optimization and 
network analysis. 

 In This study introduces key enhancements to soft set 
theory, including the extended relative complement for 
broader parameter analysis and the h-dependent complement, 
which incorporates historical parameter influence for more 
informed decision-making. We also propose a standardized 
symbolic notation to unify inconsistent definitions and 
improve clarity, and we enhance matrix representations to 

support efficient computational applications. These 
contributions strengthen the theoretical framework and 
expand the applicability of soft sets in areas such as data 
analysis, decision-making, and optimization. 

2. BASIC DEFINITIONS. 

In this section, we give some basic definitions for soft sets, 
throughout this paper, 𝑈 denotes an initial universe set and 𝐸 
is a set of parameters; the power set of 𝑈 is denoted by 𝑃(𝑈), 
and 𝐴 is a subset of 𝐸 . Soft sets are defined as a pair (𝐹, 𝐴), 
where:  

i. 𝐹: 𝐴 → 𝑃(𝑈) with 𝐴 ⊂ 𝐸 representing the set of 

parameters and 𝑃(𝑈) being the power set of 𝑈 (the 

universe).   

ii. 𝐹(𝑒) is a subset of 𝑈 for each 𝑒 ∈ 𝐴, which may 

represent attributes or properties of elements in 𝑈 see 

([3]). 

   A soft set can be expressed as a set ordered pairs (𝑒, 𝐹(𝑒)), 

where 𝐹(𝑒) is a subset of 𝑈. This representation is useful for 

formal analysis but can become cumbersome with large sets.  

2.1 Definitions of Special Soft Sets 

Definition 2.1.1 [4]: A soft set (𝐹, 𝐴) over 𝑈 is said to be 

null soft set, if  ∀𝑒 ∈ 𝐴, 𝐹(𝑒) = ∅, denoted by ̃.  

Definition 2.1.2 [4]: A soft set (𝐹, 𝐴) over 𝑈 is said to be 

absolute soft set, if  ∀𝑒 ∈ 𝐴, 𝐹(𝑒) = 𝑈, denoted by �̃�. 

Definition 2.1.3 [6]: A soft set (𝐹, 𝐴) over 𝑈 is said to be 

relative null soft set with respect to the parameter set 

𝐴, if  ∀𝑒 ∈ 𝐴, 𝐹(𝑒) = ∅, denoted by ̃𝐴. The relative Null soft 

set with respect to the set of parameters 𝐸 is called the Null 

soft set over 𝑈 and simply denoted by ̃𝐸.    
Definition 2.1.4 [6]: A soft set (𝐹, 𝐴) over 𝑈 is said to be 

relative whole soft set with respect to the parameter set 

𝐴, if ∀𝑒 ∈ 𝐴, 𝐹(𝑒) = 𝑈, denoted by 𝑈𝐴. The relative whole 

soft set 𝑈𝐸 with respect to the universe set of parameters 𝐸 is 
called the absolute soft set over U.  

2.2  Comparison of the Definitions 

2.2. 1 Equivalence Between Concepts 
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a) The empty soft set ̃ and the relative empty soft set 

̃𝐴 are considered equivalent. 

b) Similarly, the absolute soft set Ã and the relative 

absolute soft set 𝑈𝐴 are equivalent. 

2.2. 2 Notation Ambiguity 

a) The symbols ̃𝐴 and 𝑈𝐴 explicitly specify the 

parameter set 𝐴, making the notation clearer. 

However, Maji et al. use the symbols ̃ and Ã without 

specifying the parameter set, leading to ambiguity. 

b) The ambiguity becomes especially problematic when 

comparing soft sets over different parameter sets, such 

as when 𝐴 ≠  𝐵. 

2.2. 3 Proposed Resolutions 

Standardizing Notation: A uniform notation that always 

includes the parameter set (e.g., ̃𝐴 and 𝑈𝐴) would reduce 

ambiguity. To address ambiguity in soft set theory, we 

propose revising the definition of empty soft sets to focus 

solely on their function values, allowing sets over different 

parameter sets to be considered equal if their functions are 

identical. Additionally, we recommend clarifying the criteria 

for soft set equality whether it depends solely on function 

values or includes parameter sets to ensure consistency in 

theoretical interpretation and application 

2.2. 4 Maji’s Soft Subset Definition 

Maji defines (𝐹, 𝐴) as a soft subset of (𝐺, 𝐵), if 𝐴 ⊆  𝐵 and 

for every 𝑒 ∈ 𝐴, 𝐹(𝑒) and 𝐺(𝑒) are identical approximations. 

However, this doesn’t always hold, leading to the 

introduction of alternative definitions by Pei and Miao and 

Zhu and Wen. 

2.2. 5 Modifications to "Not Set" Definition 

Fu Li raised concerns about how the "Not Set" (¬𝐸) 

operation behaves. The original definition of the "not set" 

operator differs from classical set theory’s complement 

operator, leading to the suggestion of modifications to align 

it with De Morgan's laws. 

2.2. 6 Suggestions for Improvement 

To improve clarity and consistency in soft set theory, we 

advocate for the standardization of notation, particularly 

when comparing soft sets with differing parameter sets. A 

revised definition of soft subsets is also necessary to address 

cases where function values are identical but parameter sets 

vary. Furthermore, the application of De Morgan’s laws and 

the definition of the “Not Set” operation require careful 

review to prevent misinterpretation and ensure alignment 

with classical set theory principles. 

3. MODIFICATIONS AND CONTRIBUTIONS IN SOFT SET 

THEORY 

3.1 Comparison and Clarification 

a) Reevaluation of "Not Set" in Soft Set Theory: 

i. Fu Li assumed the "not set" operator behaves like 

classical set theory complements, but Singh and 

Onyeozili [14] clarified that it operates at the 

parameter level, not on entire sets. 

ii. This distinction invalidates the direct application of 

De Morgan’s laws in soft set theory. 

b) Definition of Complement and Relative 

Complement in Soft Set Theory: 

i. Complement (𝐹, 𝐴)𝑐: Defined using negated 

parameters ¬𝐴. 

ii. Relative Complement (𝐹, 𝐴)𝑟: Applies to the given 

parameter set 𝐴 without alteration. 
Definition 3.1.1: Let 𝑈 be universe sets and 𝐸 set of 

parameters with respect to 𝑈. Let  (𝐹, 𝐴) be soft sets over 𝑈 
and 𝐴 ⊂ 𝐸. Extended relative complement of a soft set (𝐹, 𝐴) 
is denoted by (𝐹, 𝐴)𝑟𝐸 and is defined by 

 (𝐹, 𝐴)𝑟𝐸 = (𝐹𝑟𝐸 , 𝐸) where 𝐹𝑟𝐸: 𝐸 → 𝑃(𝑈) is a mapping 
assigned as  

𝐹𝑟𝐸(𝛼) = {
𝑈 − 𝐹(α),       𝑖𝑓 𝛼 ∈ 𝐴
   𝑈,                      𝑖𝑓   𝛼 ∉ 𝐴

. 

Comparison Between Relative Complement and Extended 

Relative Complement 

i. Relative complement applies only to the parameters 

set 𝐴. 

ii. Extended relative complement applies to the entire 

parameters set 𝐸, allowing consideration of 

parameters beyond 𝐴. 

3.2 Example and Application (In the medical case)  

Example 1: Suppose a hospital wants to classify patients 
who are likely to have heart disease to prioritize tests and 
treatments. The complete set of parameters 𝐸 =
{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} where: 

𝑒1 = Blood test results (such as cholesterol level). 
𝑒2 = Blood pressure measurement. 
𝑒3 = Evaluation of clinical symptoms (such as chest  

             pain, shortness of breath). 
𝑒4 = Medical history (previous illnesses or genetic  
         factors). 
𝑒5 = Electrocardiogram (ECG) results. 

Accurate data may be available for parameters 𝑒1, 𝑒2 and 𝑒3, 
while data for parameters 𝑒4 and 𝑒5 may be incomplete or 
unreliable at the present stage due to time constraints or 
equipment limitations. Let us assume that there are 6 patients 
under consideration, i.e., 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} and let a 
set 𝐴 be currently available parameters 𝑒1, 𝑒2 and 𝑒3 i.e., 𝐴 =
{𝑒1, 𝑒2, 𝑒3}  . After the study, the soft set (𝐹, 𝐴) is formed,  

(𝑭, 𝑨)  = {(𝑒1, {ℎ1, ℎ2, ℎ5}), (𝑒2, {ℎ3, ℎ4}), (𝑒3, {ℎ4, ℎ5})} 

Calculate the Extended relative complement:  

(𝐹, 𝐴)𝑟𝐸 = {
𝑈 − 𝐹(α),       if 𝛼 ∈ 𝐴
 𝑈,                      𝑖𝑓   𝛼 ∉ 𝐴

 

(𝐹, 𝐴)𝑟𝐸 = {(𝑒1, {ℎ3, ℎ4, ℎ6}), (𝑒2, {ℎ1, ℎ2, ℎ5, ℎ6}), 

(𝑒3, {ℎ1, ℎ2, ℎ3, ℎ6}), (𝑒4, 𝑈), (𝑒5, 𝑈)}. 

Here, parameters 𝑒4 and 𝑒5  (history and ECG findings) 
are considered neutral due to lack of information or 
unreliability at the current stage.  

3.3 The h-Dependent Complement 

To overcome certain limitations in the classical definitions 
of soft set complement operations, this study proposes a new 
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formulation referred to as the h-dependent complement. The 
proposed definition takes into account the historical presence 
of elements within the approximate functions of parameters 
not included in the current parameter set. By integrating this 
historical influence, the h-dependent complement preserves 
the traditional behavior for parameters within the set, while 
dynamically excluding elements that have appeared 
elsewhere, thereby refining the decision-making process and 
enhancing representational accuracy. 

Definition 3.3.1 (h-Dependent Complement): 

For a soft set (𝐹, 𝐴) over a universal set 𝑈, the h-Dependent 
Complement is defined as: 

(𝐹, 𝐴)𝑟ℎ = ( 𝐹𝑟ℎ , 𝐸) 

where the new function 𝐹𝑟ℎ is given by: 

a) For 𝛼 ∈ 𝐴: 

𝐹𝑟ℎ(𝛼) = 𝑈 − 𝐹(𝛼) 
This follows the classical complement rule. 

b) For 𝛼 ∉ 𝐴: 

𝐹𝑟ℎ(𝛼) = 𝑈 −⋃𝐹(𝛽)

𝛽∈𝐴

 

This means that all elements that appeared in any function 
𝐹(𝛽) where 𝛽 ∈ 𝐴 are removed from 𝑈. 

Example 2 (Verification of the h-Dependent Complement) 

Let's consider a different example to verify whether the h-
Dependent Complement works as intended. 

first, Define the Universal Set and Parameters 

 Universal Set: 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, ℎ7} 
 Parameter Set: 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} 
 Subset of Parameters: 𝐴 = {𝑒1, 𝑒2}. 

next, we construct the Soft Set (𝐹, 𝐴) as follows: 

𝐹(𝑒1) = {ℎ1, ℎ2, ℎ3}, 𝐹(𝑒2) = {ℎ3, ℎ4}. 
Then, we apply the definition of the h-Dependent 

Complement: 

1. For 𝑒1 ∈ 𝐴, use classical complement: 𝐹𝑟ℎ(𝑒1) = 𝑈 −
𝐹(𝑒1) = {ℎ4, ℎ5, ℎ6, ℎ7} 

2. For 𝑒2 ∈ 𝐴, use classical complement: 𝐹𝑟ℎ(𝑒2) =
𝑈 − 𝐹(𝑒2) = {ℎ1, ℎ2, ℎ5, ℎ6, ℎ7} 

3. For 𝑒3, 𝑒4, 𝑒5 ∉ 𝐴, use extended exclusion rule: 

a) First, compute the union of all elements from 

parameters in 𝐴: 

𝐹(𝑒1) ∪ 𝐹(𝑒2) = {ℎ1, ℎ2, ℎ3, ℎ4} 
b) Then, apply the rule for 𝑒3, 𝑒4, 𝑒5:  

𝐹𝑟ℎ(𝑒3) = 𝐹𝑟ℎ(𝑒4) = 𝐹
𝑟ℎ(𝑒5) = 𝑈 − {ℎ1, ℎ2, ℎ3, ℎ4}

= {ℎ5, ℎ6, ℎ7} 
Final, h-Dependent Complement Set 

(𝐹, 𝐴)𝑟ℎ =

{
 
 

 
 

(𝑒1, {ℎ4, ℎ5, ℎ6, ℎ7})

(𝑒2, {ℎ1, ℎ2, ℎ5, ℎ6, ℎ7})

(𝑒3, {ℎ5, ℎ6, ℎ7})

(𝑒4, {ℎ5, ℎ6, ℎ7})

(𝑒5, {ℎ5, ℎ6, ℎ7}).

 

This example demonstrates that the h-Dependent 

Complement is valid because it correctly excludes elements 

based on whether they appeared in previously analyzed 

parameter sets. Specifically, the behaviour observed aligns 

with the theoretical expectations, as outlined below: 

a) the h-dependent complement preserves the classical 

complement behavior for parameters in 

b) It differs from traditional complements by ensuring 

that all elements previously studied are removed, even 

when analyzing new parameters. 

c) It is particularly useful in decision-making systems 

where historical data should influence classification. 

4. SOFT SET OPERATIONS 

Various operations in soft set theory, analogous to 
classical set theory operations such as union, intersection, 
complement, and difference, will be introduced and explained. 

4.1 Basic Operations 

Definition 4.1.1 [4]: Union of Two Soft Sets. 

The union of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over the common 
universe 𝑈 is a soft set (𝐻, 𝐶) where 𝐶 = 𝐴 ∪ 𝐵 and the 
mapping 𝐻:𝐶 → 𝑃(𝑈) is defined as follows: 

𝐻(𝑒) = {

𝐹(𝑒)                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝐺(𝑒)                   𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝐹(𝑒) ∪ 𝐺(𝑒)     𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

We write (𝐹, 𝐴) ∪̃ (𝐺, 𝐵) = (𝐻, 𝐶).  
Definition 4.1.2 [4]: Intersection of Two Soft Sets. 

The intersection of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over the 
common universe 𝑈 is a soft set (𝐻, 𝐶) where 𝐶 = 𝐴 ∩ 𝐵 and 
for each 𝑒 ∈ 𝐶, 𝐻(𝑒) = 𝐹(e) or 𝐺(e) (as both are same set). 
We write (𝐹, 𝐴) ∩̃𝑀 (𝐺, 𝐵) = (𝐻, 𝐶). where ∩̃𝑀 represents 
the intersection as defined by Maji. 
Concerns Raised by Pei and Miao [5]  

Pei and Miao reviewed Definition 4.1.2 and raised concerns 

about the "matching condition" in the definition. Specifically, 

they proposed that the condition: 𝐻(𝑒) = 𝐹(𝑒) or 𝐺(𝑒), 
should be replaced with: 𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒),  ∀𝑒 ∈ 𝐴 ∩ 𝐵.  

This modification ensures that the resulting mapping 𝐻(𝑒) 
explicitly reflects the intersection of the sets 𝐹(𝑒) and 𝐺(𝑒) 
rather than assuming they are identical. 

Ahmad and Kharal's Modification [15] 

Ahmad and Kharal further refined the definition of the 

intersection operation by introducing an additional condition: 

a) The intersection of the parameter sets 𝐴 ∩ 𝐵 must be 

non-empty (𝐴 ∩ 𝐵 ≠ 𝜙). They also defined the result 

when 𝐴 ∩ 𝐵 = 𝜙: 

b) In this case, the intersection of the two soft sets is the 

null soft set, denoted as �̃�𝛷. 
Definition 4.1.3 [5, 15]: Modified Intersection of Two Soft 

Sets The modified definition of the intersection of two soft 
sets (𝐹, 𝐴) and (𝐺, 𝐵) is as follows: 

a) 𝐶 = 𝐴 ∩ 𝐵 ≠ 𝜙 (the parameter sets have a non-empty 

intersection), 

For each 𝑒 ∈ 𝐶: 

𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒). 
b) If 𝐴 ∩ 𝐵 = 𝜙 then: 

(𝐹, 𝐴) ∩ (𝐺, 𝐵) = �̃�𝛷. 

4.1.1 Comparison of Notations 

To distinguish between the two versions of the intersection 

operation: 
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a) Maji's Intersection (Definition 4.1.2): 

i. Symbol: ∩̃𝑀, 

ii. Assumes 𝐹(𝑒) and 𝐺(𝑒) are identical for 𝑒 ∈ 𝐴 ∩ 𝐵. 

b) Modified Intersection (Definition 4.1.3, Pei and 

Miao, Ahmad and Kharal): 

i. Symbol: ⊓̃,  

ii. Explicitly computes the set intersection 𝐹(𝑒) ∩ 𝐺(𝑒) 
for 𝑒 ∈ 𝐴 ∩ 𝐵,  

iii. Handles the case when 𝐴 ∩ 𝐵 = 𝜙 by assigning a null 

soft set result. 

Definition 4.1.4 [9]: Given two soft sets (𝐹, 𝐸) and (𝐺, 𝐸) 
over the same universe U then, difference of (𝐹, 𝐸) and 

(𝐺, 𝐸), denoted by (𝐹, 𝐸)−̃(𝐺, 𝐸) = (𝐻, 𝐸), where 𝐻(𝑒) =
𝐹(𝑒) − 𝐺(𝑒), ∀𝑒 ∈ 𝐸. Hence if the soft sets have different 

parameter sets, i.e., (𝐹, 𝐴) and (𝐺, 𝐵) two soft sets over the 

common universe 𝑈  and a tow approximate function 𝐹 and 𝐺 

defined from 𝐸 to 𝑃(𝑈), then (𝐹, 𝐴)−̃(𝐺, 𝐵) = (𝐻, 𝐴)where,  

𝐻(𝑒) = 𝐹(𝑒) − 𝐺(𝑒), ∀𝑒 ∈ 𝐴. The function 𝐻(𝑒) is further 

refined based on whether the parameter 𝑒 belongs to the 

intersection 𝐴 ∩ 𝐵: 

𝐻(𝑒) = {
𝐹(𝑒) − 𝐺(𝑒),     𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹(𝑒),                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
. 

 Zhu and Wen extend the definition to handle cases regardless 

of whether 𝐴 = 𝐵 or if the approximate functions 𝐹 and 𝐺 are 

defined on the same domain 𝐸 [16]: (𝐹, 𝐴)−̃(𝐺, 𝐵) =
(𝐻, 𝐶)where, 𝐶 = 𝐴 − {𝑒 ∈ 𝐴 ∩ 𝐵: 𝐹(𝑒) ⊆ 𝐺(𝑒)}, and for all 

𝑒 ∈ 𝐶  

𝐻(𝑒) = {
𝐹(𝑒) − 𝐺(𝑒)     𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹(𝑒)                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Example 3: let 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} be universal set, 

and let 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6} denote the set of all 

parameters under consideration. Consider two parameter 

subset𝐴 = {𝑒2, 𝑒3} and B= {𝑒2, 𝑒3, 𝑒4}. We define 

 three soft set (𝐹, 𝐴),(𝐺, 𝐴) and (𝐾, 𝐵)  as follows: 

(𝐹, 𝐴) = {(𝑒2, {ℎ1, ℎ2, ℎ5}), (𝑒3, {ℎ3, ℎ5})},  
(𝐺, 𝐴) = {(𝑒2, {ℎ3, ℎ5}), (𝑒3, {ℎ4})}  and 

 (𝐾, 𝐵) = {(𝑒2, {ℎ1, ℎ2, ℎ3, ℎ5}), (𝑒3, {ℎ3}), (𝑒4, {ℎ4})}. 
Then:  

(𝐹, 𝐴)−̃(𝐺, 𝐴) = {(𝑒2, {ℎ1, ℎ2}), (𝑒3, {ℎ3, ℎ5}). 
(𝐹, 𝐴)−̃(𝐾, 𝐵) = {{(𝑒3, {ℎ5})} and 

  (𝐾, 𝐵)−̃(𝐹, 𝐴) = {(𝑒2, {ℎ3}), (𝑒4, {ℎ4})}. 

4.2 Extended Operations on Soft Sets 

Definition 4.2.1 [6]: Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft 
sets defined over a universe 𝑈 with parameter sets 𝐴 and 𝐵, 

respectively. The extended operation ̃𝜀 is defined as: 

(𝐹, 𝐴) ̃𝜀(𝐺, 𝐵) =  (𝐻, 𝐶), 

Where 𝐶 = 𝐴 ∪ 𝐵 and 𝐻: 𝐶 → 𝑃(𝑈) defined as: ∀ 𝑒 ∈ 𝐶 

𝐻(𝑒) = {

𝐹(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝐺(𝑒).                     𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝐹(𝑒) 𝐺(𝑒),         𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵.

 

The extended operation ̃𝜀  can be specialized or classified 

based on the specific mathematical operation or rule used 

when combining 𝐹(𝑒) and 𝐺(𝑒) in the case 𝑒 ∈ 𝐴 ∩ 𝐵. 

Common classifications include: 

1. Extended intersection [6]: The extended intersection of 

two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) written as (𝐹, 𝐴) ∩̃𝜀 (𝐺, 𝐵) =
(𝐻, 𝐶), where   

𝐻(𝑒) = {

𝐹(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝐺(𝑒),                      𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝐹(𝑒) ∩ 𝐺(𝑒),        𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵.

 

a) Preserving Information from Both Sets 

i. Unlike traditional intersections that focus only on 

shared parameters (𝐴 ∩ 𝐵), the extended intersection 

retains elements from both 𝐴 and 𝐵. 

ii. If a parameter exists only in one of the sets, its 

corresponding function value is preserved. 

b) Handling Differences in Parameter Sets 

i. If a parameter 𝑒 belongs to only one of the two 

parameter sets, the resulting function 𝐻(𝑒) is simply 

inherited from the respective set. 

ii. This contrasts with classical intersections where such 

elements would be discarded. 

c) Comparison with Classical Intersections in soft sets 

i. Traditional Soft Set Intersection (Maji, Pei & Miao) 

o The intersection defined by Maji, Pei, and Miao 

considers only the common parameters (𝐴 ∩ 𝐵).  

o This means elements that belong only to 𝐴 or 𝐵 are 

ignored, leading to potential loss of information. 

ii. Extended Intersection 

o The extended intersection is more inclusive, retaining 

parameter values from both sets while still computing 

intersections for shared elements. 

o Unlike the traditional approach, this method is less 

restrictive and captures the full context of the two soft 

sets. 

2. Extended union [6]: the extended union of two soft sets 
(𝐹, 𝐴) and (𝐺, 𝐵) written as  

       (𝐹, 𝐴) ∪̃𝜀 (G,B) = (𝐻, 𝐶), where 

𝐻(𝑒) = {

𝐹(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝐺(𝑒),                   𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝐹(𝑒) ∪ 𝐺(𝑒),     𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵.

 

3. Extended difference [17]: the extended difference of 

two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) written as (𝐹, 𝐴)−̃𝜀(𝐺, 𝐵) =
(𝐻, 𝐶), where   

𝐻(𝑐) = {

𝐹(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝐺(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝐹(𝑒) − 𝐺(𝑒),        𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵.

 

Properties: 

a) Asymmetry: The extended difference is not 

symmetric, meaning: (𝐹, 𝐴)−̃𝜀(𝐺, 𝐵) ≠
(𝐺, 𝐵)−̃𝜀(𝐹, 𝐴). 

b) Non-Negativity: The extended difference always 

produces a soft set with parameter values contained in 

(𝐹, 𝐴). However, it does not necessarily include only 

the parameter values from (𝐹, 𝐴).  
c) Empty Set Condition: 

i. If (𝐹, 𝐴) = (𝐺, 𝐵), then (𝐹, 𝐴)−̃𝜀(𝐺, 𝐵) is an  

empty soft set. That’s because (𝐹, 𝐴)−̃𝜀(𝐺, 𝐵) 








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= {

𝐹(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵 = ∅

𝐺(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴 = ∅

𝐹(𝑒) − 𝐺(𝑒) = ∅        𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵 = 𝐴 𝑜𝑟 𝐵.

 

ii. If (𝐹, 𝐴) ⊆̃ (𝐺, 𝐵), then (𝐹, 𝐴)−̃𝜀(𝐺, 𝐵) does not  

necessarily is an empty soft set for example if  (𝐹, 𝐴) 
and (𝐺, 𝐵) are soft sets under the same universal 𝑈 

and 𝐴 and 𝐵 ⊆ 𝐸, such that 

 (𝐹, 𝐴) = {{(𝑒2, {ℎ1, ℎ2}), (𝑒6, {ℎ3})},  
(𝐺, 𝐵) = {(𝑒2, {ℎ1, ℎ2, ℎ5}), (𝑒3, {ℎ3, ℎ4}), (𝑒6, {ℎ3})}, 

Then, (𝐹, 𝐴) ⊆̃ (𝐺, 𝐵), but (𝐹, 𝐴)−̃𝜀(𝐺, 𝐵) =
{(𝑒3, {ℎ3, ℎ4})} ≠ ∅. 

4. Extended symmetric difference [19]: the extended 

symmetric difference of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) 

written as (𝐹, 𝐴) ∆̃ℇ (𝐺, 𝐵), and is defined as (𝐹, 𝐴) ∆̃ℇ 

(𝐺, 𝐵) = (𝐻, 𝐶), where   

𝐻(𝑐) = {

𝐹(𝑒),                     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝐺(𝑒),                   𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴.

𝐹(𝑒)∆𝐺(𝑒),        𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵.

 

where 𝐹(𝑒)∆𝐺(𝑒) = (𝐹(𝑒) − 𝐺(𝑒)) ∪ (𝐺(𝑒) − 𝐹(𝑒)) 

represents the symmetric difference of the sets 𝐹(𝑒) and 

𝐺(𝑒). 

4.3 Restricted Operations on Soft Sets 

Definition 4.3.1 [6]: Let (𝐹, 𝐴) and (G,B) be two soft sets 

defined over a universe 𝑈 with corresponding parameter sets 

𝐸.The general restricted operation ◊̃𝑅, is defined by, 

(𝐹, 𝐴)◊̃ℜ (G,B) = (𝐻, 𝐶) where 𝐶 = 𝐴 ∩ 𝐵 ≠ ∅ and for 

each 𝑒 ∈ 𝐶, 𝐻(𝑒) = 𝐹(𝑒) ◊ 𝐺(𝑒). If 𝐴 ∩ 𝐵 = ∅ then 

(𝐹, 𝐴) ◊̃ℜ (𝐺, 𝐵) =  ̃
. 

Now the restricted operation can be classified as follows: for 

two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over a common universe 𝑈 is 

the soft set (𝐻, 𝐶) where 𝐶 = 𝐴 ∩ 𝐵 and for each 𝑒 ∈ 𝐶, then 

1. The restricted intersection [6]: the restricted  

intersection of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) written as    
(𝐹, 𝐴) ∩̃ℜ (𝐺, 𝐵) = (𝐻, 𝐶), where 

 𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒) ∀𝑒 ∈ 𝐶. 
Remark 4.3.1: Comparing the restricted intersection and the 

Pei and Miao intersection indicates that the results from both 

definitions are equal i.e., 

(𝐹, 𝐴) ∩̃ℜ (𝐺, 𝐵) = (𝐹, 𝐴) ⊓̃ (𝐺, 𝐵). 
2. The restricted union [6]: the restricted union of two soft 

sets (𝐹, 𝐴) and (𝐺, 𝐵) written as (𝐹, 𝐴) ∪̃𝑅 (𝐺, 𝐵) =
(𝐻, 𝐶), where 𝐻(𝑒) = 𝐹(𝑒) ∪ 𝐺(𝑒). 

3. The restricted difference [6]: the restricted difference of 

two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) written as (𝐹, 𝐴) −̃ℜ 

(𝐺, 𝐵) = (𝐻, 𝐶), where 𝐻(𝑒) = 𝐹(𝑒) − 𝐺(𝑒). 
4. The restricted symmetric difference [18]: the restricted 

symmetric difference of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) 
written as (𝐹, 𝐴) ∆̃𝑅 (𝐺, 𝐵), and is defined as: 

(𝐹, 𝐴) ∆̃ℜ (𝐺, 𝐵)

= ((𝐹, 𝐴) ∪̃ℜ (G,B))−̃ℜ((𝐹, 𝐴) ∩̃ℜ (𝐺, 𝐵)). 

4.4 products operations 

Definition 4.4.1 [9]: let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets 
defined over a universe 𝑈 with corresponding parameter sets 
𝐸. Then operation–product of (𝐹, 𝐴) and (𝐺, 𝐵) are: 

a) ⋀–product: (𝐹, 𝐴) ⋀ (𝐺, 𝐵) = (𝐻,𝐶) where 𝐶 =
 𝐴 × 𝐵, ∀ (𝛼, 𝛽) ∈  𝐶, 𝐻(𝛼, 𝛽)  =  𝐹(𝛼) ∩  𝐺(𝛽). 

b) ⋁–product: (𝐹, 𝐴) ⋁ (𝐺, 𝐵)  = (𝐻, 𝐶) where 𝐶 =
 𝐴 × 𝐵, ∀ (𝛼, 𝛽) ∈  𝐶, 𝐻(𝛼, 𝛽)  =  𝐹(𝛼)  ∪  𝐺(𝛽). 

c) ⋀̅–product: (𝐹, 𝐴)⋀ ̅(𝐺, 𝐵)  =  (𝐻, 𝐶) where 𝐶 =
 𝐴 × 𝐵, ∀ (𝛼, 𝛽)  ∈  𝐶, 𝐻(𝛼, 𝛽)  =  𝐹(𝛼)  ∩  𝐺𝑐(𝛽). 
It is evident that (𝐹, 𝐴) ⋀̅ (𝐺, 𝐵)  =  (𝐹, 𝐴) ˄  (𝐺, 𝐵)𝑐 

d) ⋁̅–product: (𝐹, 𝐴) ⋁ ̅(𝐺, 𝐵)  =   (𝐻, 𝐶) where 𝐶 =
 𝐴 × 𝐵, ∀ (𝛼, 𝛽)  ∈  𝐶, 𝐻(𝛼, 𝛽)  =  𝐹(𝛼)  ∪  𝐺𝑐(𝛽). 
It is evident that  (𝐹, 𝐴) ⋁ ̅(𝐺, 𝐵) =   (𝐹, 𝐴)⋁ 

(𝐺, 𝐵)𝑐. 
4.5 Standardization of Definitions and Operations Using 

Unified Symbols 

We redefine a soft set and their processes using N. 

Çağman et all [9] notation to unify the study and address 

differences in previous definitions (e.g., Maji et al. [4] and Ali 

et al. [6]). This approach contributes to enhancing theoretical 

and applied understanding. for a more consistent and 

systematic study. 

Definition 4.5.1: Let 𝑈 be an initial universe set, 𝐸 be a set 

of parameters, 𝑃(𝑈) be the power set of 𝑈 and 𝐴 ⊆ 𝐸. A soft 

set (𝐹, 𝐴) or simply 𝐹𝐴 on the universe 𝑈 is defined by the 

ordered pairs 𝐹𝐴 = (𝑓𝐴, 𝐸) = {(𝑒, 𝑓𝐴(𝑒)): 𝑒 ∈ 𝐸, 𝑓𝐴(𝑒) ∈

𝑃(𝑈)}, where 𝑓𝐴: 𝐸 → 𝑃(𝑈) such that 𝑓𝐴(𝑒) = ∅ if 𝑒 ∉ 𝐴. 

Here 𝑓𝐴 is called approximate function of the soft set 𝐹𝐴. 
Definition 4.5.2:  A soft subset: Let 𝐹𝐴 =

(𝑓𝐴, 𝐸) an𝑑 𝐹𝐵 = (𝑓𝐵, 𝐸) be two soft sets over U. then  
1. Maji's definition of soft subset: 𝐹𝐴 Maji - subset of 

𝐹𝐵,  denoted by 𝐹𝐴 ⸦̃M 𝐹𝐵 if 𝑓𝐴(𝑒) = 𝑓𝐵(𝑒). ∀𝑒 ∈ 𝐴. 

2. Pei's definition of soft subset: 𝐹𝐴 Pei - subset of 𝐹𝐵, 
denoted by 𝐹𝐴 ⸦̃ 𝐹𝐵 if 𝑓𝐴(𝑒)  𝑓𝐵(𝑒) ∀𝑒 ∈ 𝐸. 

Definition 4.5.3: if 𝐹𝐴 = (𝑓𝐴, 𝐸) then 𝐹𝐴 called: 

1. empty soft set if ∀𝑒 ∈ 𝐴 𝑓𝐴(𝑒) = ∅, then 𝐹𝐴, denoted 

by 𝐹Φ̃. 

2. A-universal soft set if ∀𝑒 ∈ 𝐴 𝑓𝐴(𝑒) = 𝑈, denoted by 

𝐹Ã. and if 𝐴 = 𝐸, then the A-universal soft set is 

called universal soft set denoted by 𝐹Ẽ. 
Definition 4.5.4: Let 𝐹𝐴 = (𝑓𝐴, 𝐸) an𝑑 𝐹𝐵 = (𝑓𝐵 , 𝐸) be 

two soft sets over U. then  
1. Complement of a soft set 𝐹𝐴 denoted by𝐹𝐴

𝑐 =
(𝑓𝐴, 𝐸)

𝑐 = (𝑓𝐴
𝑐, ¬𝐸) 𝑜𝑟 (𝑓𝐴𝑐 , ¬𝐸), defined by the 

approximate function 𝑓𝐴𝑐(¬𝑒) = 𝑈 − 𝑓𝐴(𝑒) ∀¬𝑒 ∈
¬𝐸. 

2. relative complement of a soft set 𝐹𝐴 denoted by𝐹𝐴
𝑟 =

(𝑓𝐴, 𝐸)
𝑟 = (𝑓𝐴

𝑟 , 𝐸), defined by the approximate 
function 𝑓𝐴

𝑟(𝑒) = 𝑈 − 𝑓𝐴(𝑒) ∀𝑒 ∈ 𝐸. 
3. union of 𝐹𝐴 an𝑑 𝐹𝐵 denoted by (𝑓𝐴, 𝐸) ∪̃ (𝑓𝐵 , 𝐸) =

(𝑓𝐴∪𝐵 , 𝐸), where 𝑓𝐴∪𝐵(𝑒) = 𝑓𝐴(𝑒) ∪ 𝑓𝐵(𝑒) ∀𝑒 ∈ 𝐸. 
4. Maji's definition of intersection of 𝐹𝐴 an𝑑 𝐹𝐵 

denoted by (𝑓𝐴, 𝐸) ∩̃𝑀 (𝑓𝐵, 𝐸) = (𝑓𝐴∩𝐵, 𝐸), where 

∀𝑒 ∈ 𝐸, 𝑓𝐴∩𝐵(𝑒) = 𝑓𝐴(𝑒) or 𝑓𝐵(𝑒) since 𝑓𝐴(𝑒) =
𝑓𝐵(𝑒) ∀𝑒 ∈ 𝐴 ∩ 𝐵.   
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5. Pei's definition of intersection of 𝐹𝐴 an𝑑 𝐹𝐵 denoted 

by (𝑓𝐴, 𝐸) ⊓̃ (𝑓𝐵, 𝐸) = (𝑓𝐴∩𝐵, 𝐸), where , 𝑓𝐴∩𝐵(𝑒) =
𝑓𝐴(𝑒) ∩ 𝑓𝐵(𝑒)∀𝑒 ∈ 𝐸.   

In the same way, the difference operation, and other 

operations such as extended, Restricted and product 

operations can be redefined.  

5. MATRIX REPRESENTATION OF SOFT SETS  

Çağman and Enginoğlu [10] gives the definition of soft 

matrices which are representations of soft sets. This 

representation has several advantages. It is easy to store and 

manipulate matrices.  

5.1 Soft Matrices 

Definition 5.1.1 [10]: Let 𝐹𝐴 = (𝑓𝐴, 𝐸) be a soft set over 
𝑈. Then a subset ℛ𝐴 of 𝑈 × 𝐸 uniquely defined as:  

ℛ𝐴 = {(ℎ, 𝑒): 𝑒 ∈ 𝐴, ℎ ∈ 𝑓𝐴(𝑒)}. 
ℛ𝐴 called a relation form of the soft set 𝐹𝐴. the characteristic 

function of ℛ𝐴 is defined as: 

𝒳ℛ𝐴: 𝑈 × 𝐸 → {0,1},𝒳ℛ𝐴 = {
1      𝑖𝑓 (ℎ, 𝑒) ∈ ℛ𝐴 
0      𝑖𝑓 (ℎ, 𝑒) ∉ ℛ𝐴

 

 Table Form of Relation ℛ𝐴 of a Soft Set 𝐹𝐴 [10] 

Let 𝑈 = {ℎ1, ℎ2, ℎ3, . . . , ℎ𝑚}, 𝐸 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑛} and 𝐴 subset of 

𝐸 then ℛ𝐴 can be presented by a table as in the following 

form 

 

𝓡𝑨 𝒆𝟏 𝒆𝟐 … 𝒆𝒏 

𝒉𝟏 𝒳ℛ𝐴(ℎ1, 𝑒1) 𝒳ℛ𝐴(ℎ1, 𝑒2) … 𝒳ℛ𝐴(ℎ1, 𝑒𝑛) 

𝒉𝟐 𝒳ℛ𝐴(ℎ2, 𝑒1) 𝒳ℛ𝐴(ℎ2, 𝑒2) … 𝒳ℛ𝐴(ℎ2, 𝑒𝑛) 

… …. … … … 

𝒉𝒎 𝒳ℛ𝐴(ℎ𝑚, 𝑒1) 𝒳ℛ𝐴(ℎ𝑚, 𝑒2) … 𝒳ℛ𝐴(ℎ𝑚, 𝑒𝑛) 

If 𝑎𝑖𝑗  = 𝒳ℛ𝐴(ℎ𝑖 , 𝑒𝑗) a matrix [𝑎𝑖𝑗]𝑚×𝑛 is called an 𝑚 × 𝑛  soft 

matrix corresponding to the soft set 𝐹𝐴 over 𝑈, defined by 

[𝑎𝑖𝑗]𝑚×𝑛 = [

𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21
⋮
𝑎𝑚1

𝑎22
⋮

𝑎𝑚2

. . .
⋱
. . .

𝑎2𝑛
⋮

𝑎𝑚𝑛

] 

within the concept of a soft matrix, a soft set 𝐹𝐴 can be 

uniquely and specifically represented by the matrix [𝑎𝑖𝑗]𝑚×𝑛. 

Where 𝑚 = |𝑈| and 𝑛 = |𝐸|, Mathematically, this 
representation is a complete expression of the soft set, as the 
soft set becomes exactly equal to the corresponding soft 
matrix in terms of structure and properties. From now will be 
denoted by 𝑆𝑀𝑚×𝑛 for all 𝑚 × 𝑛 soft matrices over 𝑈, and 

[𝑎𝑖𝑗] instead of [𝑎𝑖𝑗]𝑚×𝑛for all [𝑎𝑖𝑗]𝑚×𝑛 ∈ 𝑆𝑀𝑚×𝑛,  𝑖 =

1,2… ,𝑚, 𝑗 = 1,2, … , 𝑛. 

Example 4: if 𝑈 = {ℎ1, ℎ2, ℎ3} and 𝐴 = {𝑒2, 𝑒3, 𝑒4} subset 
of  𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. If soft set 𝐹𝐴 =
{(𝑒2, {ℎ1, ℎ3}), (𝑒3, {ℎ1, ℎ2, ℎ3}), (𝑒4, {ℎ1})}. A relation 
ℛ𝐴 form of the soft set 𝐹𝐴 is written by: ℛ𝐴 =
{(ℎ1, 𝑒2), (ℎ3, 𝑒2), (ℎ1, 𝑒3), (ℎ2, 𝑒3), (ℎ3, 𝑒3), (ℎ1, 𝑒4)}. 

Hence the soft matrix [𝑎𝑖𝑗]3×4 corresponding to the soft 

set 𝐹𝐴  defined by  

[𝑎𝑖𝑗]3×4 = [
0 1 1 1
0 0 1 0
0 1 1 0

]. 

The Relationship Between Soft Sets and their Matrix 

Representation: 

1. Mathematical Representation 

 Soft Sets: Represented as a function mapping parameter 

to a universe set, describing the relationship between 

elements and parameters. 

Soft Matrices: Matrix representations of soft sets, 

converting them into a structured form for easier 

computational and analytical operations. 

2. Advantages of Matrix Representation 

Simplification: Soft matrices offer a visual, organized 

representation of soft sets, using 1 or 0 to indicate the 

presence or absence of a relationship. 

Computational Efficiency: Soft matrices enable fast, efficient 

mathematical operations, which can be challenging with soft 

sets directly. 

5.2 Special Matrices 

Definition 5.2.1 Zero Soft Matrix [10]: let [𝑎𝑖𝑗] ∈

𝑆𝑀𝑚×𝑛 then a matrix [𝑎𝑖𝑗]  is called zero soft matrix if 𝑎𝑖𝑗 =
0 for all 𝑖 𝑎𝑛𝑑 𝑗. denoted by [0]. 

a) Interpretation: This matrix is equivalent to the empty 
soft set, which is defined as a soft set whose 
approximate function is equal to the empty set for 
every element in the set of parameters. 

b) Mathematical: If [𝑎𝑖𝑗] is the equivalent matrix 

representation of the soft set 𝐹𝐴, then [𝑎𝑖𝑗] = [0] ⇔

𝐹𝐴 = 𝐹Φ̃. 

Definition 5.2.2 Universal Soft Matrix [10]: let [𝑎𝑖𝑗] ∈

𝑆𝑀𝑚×𝑛 then a matrix [𝑎𝑖𝑗] is called universal soft matrix if 

𝑎𝑖𝑗 = 1 for all 𝑖 𝑎𝑛𝑑 𝑗. denoted by [1]. 
a) Interpretation: This matrix is equivalent to the 

universal soft set with respect to the set of parameters 
𝐸, which is defined as a soft set whose approximate 
function is equal to the universe 𝑈 for every 
parameter in the set 𝐸.  

b) Mathematical: If [𝑎𝑖𝑗] is the equivalent matrix 

representation of the soft set 𝐹Ã, then [𝑎𝑖𝑗] = [1] ⇔
𝐹𝐴 = 𝐹Ẽ. 

Definition 5.2.3 A-universal Soft Matrix [10]: let [𝑎𝑖𝑗] ∈

𝑆𝑀𝑚×𝑛 then a matrix [𝑎𝑖𝑗] is called A- universal soft matrix if 

𝑎𝑖𝑗 = 1 for all 𝑗 ∈ 𝐼𝐴 = { 𝑗: 𝑒𝑗 ∈ 𝐴} and 𝑖. denoted by [�̃�𝑖𝑗] .  
a) Interpretation: This matrix is equivalent to the 

universal soft set with respect to the set of parameters 
𝐴, This means that the relationship between elements 
and parameters is limited only to the set of 
parameters 𝐴 ⊆ 𝐸, making this matrix the matrix 

form of the A-universal soft set 𝐹Ã. 

b) Mathematical: If [𝑎𝑖𝑗] is the equivalent matrix 

representation of the soft set 𝐹Ã, then [𝑎𝑖𝑗]  =

[�̃�𝑖𝑗] ⇔ 𝐹𝐴 = 𝐹Ã. 

Example 5: if [𝑎𝑖𝑗], [𝑏𝑖𝑗] and [𝑐𝑖𝑗] ∈ 𝑆𝑀3×4 such that  

[𝑎𝑖𝑗] = [
0 0 0 0
0 0 0 0
0 0 0 0

], [𝑏𝑖𝑗] = [
0 1 1 1
0 1 1 1
0 1 1 1

] and 
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[𝑐𝑖𝑗] = [
1 1 1 1
1 1 1 1
1 1 1 1

]  

then 

[𝑎𝑖𝑗] = [0], [𝑏𝑖𝑗] =[�̃�𝑖𝑗] and [𝑐𝑖𝑗] = [1]. 

Definition 5.2.4 [10]: let [𝑎𝑖𝑗], [𝑏𝑖𝑗] ∈ 𝑆𝑀𝑚×𝑛 then  

a) [𝑎𝑖𝑗] is a soft submatrix of [𝑏𝑖𝑗] if 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗  for all 

𝑖 𝑎𝑛𝑑 𝑗, denoted by [𝑎𝑖𝑗] ⊆̃ [𝑏𝑖𝑗]. 

b) [𝑎𝑖𝑗] and [𝑏𝑖𝑗] are soft equal matrices if 𝑎𝑖𝑗 = 𝑏𝑖𝑗for 

all 𝑖 𝑎𝑛𝑑 𝑗, denoted by [𝑎𝑖𝑗] = [𝑏𝑖𝑗]. 

Remark 5.2.1: From the previous definition, if [𝑎𝑖𝑗] and 

[𝑏𝑖𝑗] are the matrix representations corresponding to the soft 

sets 𝐹𝐴 and 𝐹𝐵 respectively, then: [𝑎𝑖𝑗] ⊆̃ [𝑏𝑖𝑗] ⇔ 𝐹𝐴 ⊆̃ 𝐹𝐵.  

Example 6: let [𝑎𝑖𝑗], [𝑏𝑖𝑗]𝑎𝑛𝑑 [𝑐𝑖𝑗]  ∈ 𝑆𝑀3×3 such that 

[𝑎𝑖𝑗] = [
0 0 1
0 1 1
1 0 1

] , [𝑏𝑖𝑗] = [
0 1 1
1 1 1
1 1 1

] 𝑎𝑛𝑑 [𝑐𝑖𝑗] =

[
0 1 1
1 1 1
1 1 1

] then [𝑎𝑖𝑗] ⊂̃ [𝑏𝑖𝑗] and [𝑏𝑖𝑗] = [𝑐𝑖𝑗]. 

5.3 Operations on Soft Matrices 

1. Union operation [10]: if [𝑎𝑖𝑗], [𝑏𝑖𝑗]𝑎𝑛𝑑 [𝑐𝑖𝑗]  ∈

𝑆𝑀𝑚×𝑛 then union of[𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑗] is soft 

matrices[𝑐𝑖𝑗], denoted by[𝑎𝑖𝑗] ∪̃ [𝑏𝑖𝑗] = [𝑐𝑖𝑗], where 𝑐𝑖𝑗 =

𝑚𝑎𝑥 {𝑎𝑖𝑗 , 𝑏𝑖𝑗}, ∀ 𝑖 𝑎𝑛𝑑 𝑗. 

Remark 5.3.1: if [𝑎𝑖𝑗] and [𝑏𝑖𝑗] are the matrices 

representations corresponding to the soft sets 𝐹𝐴 and 𝐹𝐵 

respectively, then [𝑎𝑖𝑗] ∪̃ [𝑏𝑖𝑗] = [𝑐𝑖𝑗] ⇔ [𝑐𝑖𝑗] is matrix 

representation corresponding to the soft set 𝐹𝐶 where 𝐹𝐶 = 𝐹𝐴 

∪̃𝜀 𝐹𝐵.   

2. Intersection operation [10]: let [𝑎𝑖𝑗], [𝑏𝑖𝑗] 𝑎𝑛𝑑 [𝑐𝑖𝑗]  ∈

𝑆𝑀𝑚×𝑛 then intersection of [𝑎𝑖𝑗]  

and [𝑏𝑖𝑗] is soft matrices [𝑐𝑖𝑗],  denoted by  [𝑎𝑖𝑗] ∩̃ [𝑏𝑖𝑗]  =

[𝑐𝑖𝑗], where 𝑐𝑖𝑗 =  𝑚𝑖𝑛 {𝑎𝑖𝑗 , 𝑏𝑖𝑗}, for all 𝑖 𝑎𝑛𝑑 𝑗.  

Remark 5.3.2: if [𝑎𝑖𝑗] and [𝑏𝑖𝑗] are the matrices 

representations corresponding to the soft sets 𝐹𝐴 and 𝐹𝐵 

respectively, then [𝑎𝑖𝑗] ∩̃ [𝑏𝑖𝑗] = [𝑐𝑖𝑗] ⇔ [𝑐𝑖𝑗] is matrix 

representation corresponding to the soft set 𝐹𝐶 where 𝐹𝐶 = 𝐹𝐴 
∩̃𝑅 𝐹𝐵.   

Example 7: let [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑗] ∈ 𝑆𝑀3×3 such that  

[𝑎𝑖𝑗] = [
1 1 1
0 1 1
1 0 1

] , [𝑏𝑖𝑗] = [
0 0 0
1 1 0
1 0 1

] 

Then  [𝑎𝑖𝑗] ∪̃ [𝑏𝑖𝑗] = [
1 1 1
1 1 1
1 0 1

]  and 

   [𝑎𝑖𝑗] ∩̃ [𝑏𝑖𝑗] = [
0 0 0
0 1 0
1 0 1

] 

3. Complement Operation [10]: let [𝑎𝑖𝑗] ∈ 𝑆𝑀𝑚×𝑛 then the 

complement of [𝑎𝑖𝑗] is soft matrices [𝑐𝑖𝑗] ∈ 𝑆𝑀𝑚×𝑛 , denoted 

by [𝑎𝑖𝑗]
°
= [𝑐𝑖𝑗], where 𝑐𝑖𝑗 = 1 - 𝑎𝑖𝑗 , for all 𝑖 𝑎𝑛𝑑 𝑗. 

4. A-Complement Operation [19]: let  𝐴 ⊆ 𝐸 = {𝑒𝑗: 1 ≤

𝑗 ≤ 𝑛}, 𝐼𝐴 = {𝑗: 𝑒𝑗 ∈ 𝐴}, and [𝑎𝑖𝑗] ∈ 𝑆𝑀𝑚×𝑛 

corresponding to a soft set (𝑓𝐴, 𝐸), then  A-complement 

of [𝑎𝑖𝑗] is soft matrices [𝑐𝑖𝑗] ∈ 𝑆𝑀𝑚×𝑛, denoted by 

[𝑎𝑖𝑗]
°𝐴
= [𝑐𝑖𝑗], where 

𝑐𝑖𝑗 = {
1 −  𝑎𝑖𝑗 ,   𝑖𝑓 𝑗 ∈  𝐼𝐴   

0,               𝑖𝑓  𝑗 ∉  𝐼𝐴
. 

Example 8: suppose that (𝑓𝐴, 𝐸) = {(𝑒1, {ℎ1, ℎ2}), 
(𝑒3, {ℎ1, ℎ3}), (𝑒4, {ℎ2, ℎ3})}, where 𝑈 = {ℎ1, ℎ2, ℎ3}, 𝐸 =
{𝑒1, 𝑒2, 𝑒3, 𝑒4} and 𝐴 = {𝑒1, 𝑒3, 𝑒4}. relative complement 𝐹𝐴

𝑟 =
(𝑓𝐴, 𝐸)

𝑟 = {(𝑒1, {ℎ3}), (𝑒3, {ℎ2}), (𝑒4, {ℎ1})}. A soft matrix 

[𝑎𝑖𝑗], [𝑎𝑖𝑗
𝑟]  ∈ 𝑆𝑀3×4 corresponding to the soft sets (𝑓𝐴, 𝐸) 

and (𝑓𝐴, 𝐸)
𝑟respectivly. defined by  

[𝑎𝑖𝑗] = [
1 0 1 0
1 0 0 1
0 0 1 1

] and [𝑎𝑖𝑗
𝑟] = [

0 0 0 1
0 0 1 0
1 0 0 0

]. 

   Then [𝑎𝑖𝑗]
∘
= [
0 1 0 1
0 1 1 0
1 1 0 0

] and [𝑎𝑖𝑗]
°𝐴
 = [

0 0 0 1
0 0 1 0
1 0 0 0

] . 

Remark 5.3.3: From the example, we observe that the soft 
matrix representing the relative complement of 𝐹𝐴 is equal to 

the A-complement of 𝑎𝑖𝑗 , i.e., [𝑎𝑖𝑗
𝑟] = [𝑎𝑖𝑗]

°𝐴
.Additionally, 

we find that: [𝑎𝑖𝑗
𝑟𝐸] = [𝑎𝑖𝑗]

∘
.This demonstrates the 

consistency of relative complements and soft matrix 
operations. 

5. Difference Operation [19]: Let [𝑎𝑖𝑗], [𝑏𝑖𝑗] ∈ 𝑆𝑀𝑚×𝑛, 

then difference of  [𝑎𝑖𝑗] from  [𝑏𝑖𝑗] is another soft 

matrices [𝑐𝑖𝑗],  denoted by  [𝑎𝑖𝑗]−̃[𝑏𝑖𝑗]  = [𝑐𝑖𝑗], where  

[𝑐𝑖𝑗] =  [𝑎𝑖𝑗] ∩̃ [𝑏𝑖𝑗]
°
=  𝑚𝑖𝑛 {𝑎𝑖𝑗 , 1 − 𝑏𝑖𝑗}. 

This operation finds the difference by taking the element-

wise minimum between [𝑎𝑖𝑗]  and the complement of [𝑏𝑖𝑗]. 

 Example 9: if [𝑎𝑖𝑗] and [𝑏𝑖𝑗] ∈ 𝑆𝑀3×3 such that 

[𝑎𝑖𝑗] = [
1 1 1
0 1 1
1 0 1

] , [𝑏𝑖𝑗] = [
0 0 0
1 1 0
1 0 1

]. 

To find difference between  [𝑎𝑖𝑗] and  [𝑏𝑖𝑗]  i.e., [𝑎𝑖𝑗]−̃[𝑏𝑖𝑗]. 

Firstly, we must find [𝑏𝑖𝑗]
°
 

[𝑏𝑖𝑗]
°
= [

1 1 1
0 0 1
0 1 0

] 

Secondly, we find the difference by applying the 

intersection between [𝑎𝑖𝑗] and [𝑏𝑖𝑗]
°
Then 

[𝑎𝑖𝑗]−̃[𝑏𝑖𝑗] = [𝑎𝑖𝑗] ∩̃ [𝑏𝑖𝑗]
°
= [

1 1 1
0 1 1
1 0 1

]  ∩̃  [
1 1 1
0 0 1
0 1 0

]

= [
1 1 1
0 0 1
0 0 0

]. 

Conclusion: The difference operation successfully removes 

elements in [𝑏𝑖𝑗] from [𝑎𝑖𝑗] by intersecting with the 

complement of [𝑏𝑖𝑗].  

Remark 5.3.4: if [𝑎𝑖𝑗] and [𝑏𝑖𝑗] are the matrices 

representations corresponding to the soft sets 𝐹𝐴 and 𝐹𝐵 
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respectively, then [𝑎𝑖𝑗]−̃[𝑏𝑖𝑗] = [𝑐𝑖𝑗] ⇔ [𝑐𝑖𝑗] is matrix 

representation corresponding to the soft set 𝐹𝐶 where 
𝐹𝐶 = 𝐹𝐴 −̃ 𝐹𝐵. 

5.4 Products of Soft Matrices 

 Let [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑘]  ∈ 𝑆𝑀𝑚×𝑛 then 

a) And-product: And-product of [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑘] is defined 

by ⋀: 𝑆𝑀𝑚×𝑛 × 𝑆𝑀𝑚×𝑛 → 𝑆𝑀𝑚×𝑛2, [𝑎𝑖𝑗] ⋀ [𝑏𝑖𝑘] =

[𝑐𝑖𝑝] where 𝑐𝑖𝑝 = 𝑚𝑖𝑛 {𝑎𝑖𝑗 , 𝑏𝑖𝑘} such that 𝑝 = 𝑛(𝑗 −
1) + 𝑘.  

b) Or-product: Or-product of [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑘] is defined by 

∨: 𝑆𝑀𝑚×𝑛 × 𝑆𝑀𝑚×𝑛 → 𝑆𝑀𝑚×𝑛2 , [𝑎𝑖𝑗]  ∨  [𝑏𝑖𝑘] = [𝑐𝑖𝑝] 

where 𝑐𝑖𝑝 = 𝑚𝑎𝑥{𝑎𝑖𝑗 , 𝑏𝑖𝑘} such that 𝑝 = 𝑛(𝑗 − 1) + 𝑘.  

c) And-Not-product: And-Not-product of [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑘] is 

defined by ∧̅: 𝑆𝑀𝑚×𝑛 × 𝑆𝑀𝑚×𝑛 → 𝑆𝑀𝑚×𝑛2 , 

[𝑎𝑖𝑗]  ∧̅  [𝑏𝑖𝑘] = [𝑐𝑖𝑝] where 𝑐𝑖𝑝 = 𝑚𝑖𝑛 {𝑎𝑖𝑗 , 1 − 𝑏𝑖𝑘} 

such that 𝑝 = 𝑛(𝑗 − 1) + 𝑘. Note that [𝑎𝑖𝑗]  ∧̅  [𝑏𝑖𝑘] =

[𝑎𝑖𝑗] ⋀ [𝑏𝑖𝑘]
°. 

d) Or-Not-product: Or-Not-product of [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑘] is 

defined by ∨: 𝑆𝑀𝑚×𝑛 × 𝑆𝑀𝑚×𝑛 → 𝑆𝑀𝑚×𝑛2 , 

[𝑎𝑖𝑗]  ∨  [𝑏𝑖𝑘] = [𝑐𝑖𝑝] where 𝑐𝑖𝑝 = 𝑚𝑎𝑥 {𝑎𝑖𝑗 , 1 − 𝑏𝑖𝑘} 

such that 𝑝 = 𝑛(𝑗 − 1) + 𝑘. Note that [𝑎𝑖𝑗]  ∨  [𝑏𝑖𝑘] =

[𝑎𝑖𝑗]  ∨  [𝑏𝑖𝑘]
° 

Indexing Explanation:  

a) For each operation, a resulting array of size 𝑚 × 𝑛2 is 

constructed. The elements of the resulting array are 

arranged so that each element has a specific location 

based on two indexes 𝑗 (a column in the original array) 

and 𝑘 (another column in the second array).  

b) The equation: 𝑛(𝑗 − 1) + 𝑘. helps to convert the pair 

(𝑗, 𝑘) to a single index 𝑝 in the range from 1 to 𝑛2. 

c) The relation 𝑛(𝑗 − 1) + 𝑘. Works on: 

i. If 𝑗 = 1 then 𝑝 takes values from 1 to 𝑛, when 𝑘 it varies 

from 1 to 𝑛. 
ii. If 𝑗 = 2 then 𝑝 it starts from  𝑛 + 1 to 2𝑛, and so on. 

Example 10: suppose that [𝑎𝑖𝑗] and [𝑏𝑖𝑗] ∈ 𝑆𝑀3×3 such that   

[𝑎𝑖𝑗] = [
1 1 1
0 1 1
1 0 1

] , [𝑏𝑖𝑗] = [
0 0 0
1 1 0
1 0 1

]. 

Then And-product of [𝑎𝑖𝑗] 𝑎𝑛𝑑 [𝑏𝑖𝑘] 

[𝑎𝑖𝑗] ⋀  [𝑏𝑖𝑘] = [
0 0 0 0 0 0 0 0 0
0
1

0
0

0
1

1 1 0 1 1 0
0 0 1 1 0 1

]. 

In a similar manner, the Or-product, And-Not-product, and 

Or-Not-product can be determined. 

6. CONCLUSION 

This study enhances soft set theory by introducing refined 

operations such as the extended relative complement and h-

dependent complement, which improve decision-making 

under uncertainty. By unifying symbolic notation and 

advancing matrix representations, the work strengthens the 

theoretical foundation and expands practical applications in 

data analysis, AI, and related fields.  
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